分析 尋找使不等式成立的充分條件,直到使不等式成立的充分條件已經(jīng)顯然具備為止.
解答 證明:要證明:$\sqrt{3}$-$\sqrt{6}$<2-$\sqrt{7}$.
只需證明$\sqrt{3}$+$\sqrt{7}$<2+$\sqrt{6}$,
只需證明($\sqrt{3}$+$\sqrt{7}$)2<(2+$\sqrt{6}$)2,
只需證明3+2$\sqrt{21}$+7<4+4$\sqrt{6}$+6,
只需證明$\sqrt{21}$<2$\sqrt{6}$,
只需證明21<24,這是顯然成立的,
得證,$\sqrt{3}$-$\sqrt{6}$<2-$\sqrt{7}$.
點評 本題主要考查用分析法證明不等式,關(guān)鍵是尋找使不等式成立的充分條件,直到使不等式成立的充分條件已經(jīng)顯然具備為止,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|x≤0,或x≥1} | B. | {x|x<0,或x>1} | C. | {x|0≤x≤1} | D. | {x|0<x<1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{a}{{\sqrt{1-{a^2}}}}$ | B. | $\frac{-a}{{\sqrt{1-{a^2}}}}$ | C. | $\frac{{\sqrt{1-{a^2}}}}{a}$ | D. | $\frac{{-\sqrt{1-{a^2}}}}{a}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com