12.圓心在直線(xiàn)x-2y=0上的圓C與y軸的正半軸相切,圓C截x軸所得弦的長(zhǎng)為2$\sqrt{3}$,求圓C的標(biāo)準(zhǔn)方程.

分析 由圓心在直線(xiàn)x-2y=0上,設(shè)出圓心坐標(biāo),再根據(jù)圓與y軸相切,得到圓心到y(tǒng)軸的距離即圓心橫坐標(biāo)的絕對(duì)值等于圓的半徑,表示出半徑r,由弦長(zhǎng)的一半,圓的半徑r及表示出的d利用勾股定理列出關(guān)于t的方程,求出方程的解得到t的值,從而得到圓心坐標(biāo)和半徑,根據(jù)圓心和半徑寫(xiě)出圓的方程即可.

解答 解:設(shè)圓心為(2t,t),半徑為r=|2t|,
∵圓C截x軸所得弦的長(zhǎng)為2$\sqrt{3}$,
∴t2+3=4t2,
∴t=±1,
∵圓C與y軸的正半軸相切,
∴t=-1不符合題意,舍去,
故t=1,2t=2,
∴(x-2)2+(y-1)2=4.

點(diǎn)評(píng) 此題綜合考查了垂徑定理,勾股定理及點(diǎn)到直線(xiàn)的距離公式.根據(jù)題意設(shè)出圓心坐標(biāo),找出圓的半徑是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.隨機(jī)地排列數(shù)字1,5,6得到一個(gè)三位數(shù),計(jì)算下列事件的概率.
(1)所得的三位數(shù)大于400;
(2)所得的三位數(shù)是偶數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.有四組函數(shù)①f(x)=1與g(x)=x0;②$f(x)=\root{3}{x^3}$與g(x)=x;③f(x)=x與$g(x)={(\sqrt{x})^2}$;④f(x)=x與$g(x)=\sqrt{x^2}$其中是同一函數(shù)的組數(shù)( 。
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=cos(ωx+φ)(ω>0,0≤φ≤π)為奇函數(shù),且其圖象上相鄰的一個(gè)最高點(diǎn)和最低點(diǎn)之間的距離為$\sqrt{4{+π}^{2}}$,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知一個(gè)幾何體的三視圖如圖所示,畫(huà)出該幾何體的直觀(guān)圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.一個(gè)四棱柱的底面是正方形,側(cè)棱與底面垂直,其長(zhǎng)度為4,棱柱的體積為16,棱柱的各頂點(diǎn)在一個(gè)球面上,則這個(gè)球的表面積是(  )
A.16πB.20πC.24πD.32π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.下列表述正確的是( 。
①歸納推理是由部分到整體的推理;      
②合情推理的結(jié)果一定是正確的;
③演繹推理是由一般到特殊的推理;      
④類(lèi)比推理是由特殊到一般的推理;
⑤類(lèi)比推理是由特殊到特殊的推理.
A.①②③B.②③④C.②④⑤D.①③⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1(a>b>0)$的離心率e=$\frac{\sqrt{3}}{2}$,若橢圓C上任一點(diǎn)T與兩交點(diǎn)連線(xiàn)所得的三角形面積的最大值為$\sqrt{3}$.
(1)求橢圓C的方程;
(2)設(shè)直線(xiàn)l與橢圓C相交于A(yíng),B兩點(diǎn),直線(xiàn)OA,l,OB的斜率分別為k1,k,k2(其中k>0),若k1,k,k2恰好構(gòu)成公比不為1的等比數(shù)列,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.函數(shù)f(x)對(duì)于任意的實(shí)數(shù)x,y都有f(x+y)=f(x)+f(y)成立,且當(dāng)x>0時(shí)f(x)<0恒成立.
(1)證明函數(shù)f(x)是R上的單調(diào)減函數(shù);
(2)解關(guān)于x的不等式$\frac{1}{2}$f(-2x2)-f(x)>$\frac{1}{2}$f(4x)-f(-2).

查看答案和解析>>

同步練習(xí)冊(cè)答案