【題目】已知拋物線C的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)F在x軸的正半軸上,過(guò)點(diǎn)F的直線l與拋物線C相交于A、B兩點(diǎn),且滿足 .
(1)求拋物線C的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)M在拋物線C的準(zhǔn)線上運(yùn)動(dòng),其縱坐標(biāo)的取值范圍是[﹣1,1],且 ,點(diǎn)N是以線段AB為直徑的圓與拋物線C的準(zhǔn)線的一個(gè)公共點(diǎn),求點(diǎn)N的縱坐標(biāo)的取值范圍.
【答案】
(1)解:設(shè)拋物線的標(biāo)準(zhǔn)方程為y2=2px(p>0),其焦點(diǎn)F的坐標(biāo)為
直線l的方程為 ,A(x1,y1),B(x2,y2),
聯(lián)立方程 消去x得:y2﹣2pty﹣p2=0,
所以 ,
因?yàn)? ,解得p=1,
所以所求拋物線C的標(biāo)準(zhǔn)方程為y2=2x
(2)解:設(shè)點(diǎn) ,
由(1)知, ,所以 ,
因?yàn)? ,
所以(t﹣m)2=9得t=m+3或t=m﹣3,
因?yàn)椹?≤m≤1,∴2≤t≤4或﹣4≤t≤﹣2,
由拋物線定義可知,以線段AB為直徑的圓與拋物線C的準(zhǔn)線相切,
所以點(diǎn)N的縱坐標(biāo)為 ,
所以點(diǎn)N的縱坐標(biāo)的取值范圍是[﹣4,﹣2]∪[2,4]
【解析】(1)設(shè)出拋物線方程,聯(lián)立方程 消去x得:y2﹣2pty﹣p2=0,利用韋達(dá)定理及向量的數(shù)量積公式,求出p,即可求拋物線的方程;(2)由(1)知, ,結(jié)合 ,確定t的范圍,根據(jù)拋物線的定義可知,以AB為直徑的圓與拋物線的準(zhǔn)線相切,可得點(diǎn)N的縱坐標(biāo)為 ,即可求出點(diǎn)N的縱坐標(biāo)的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: (a>b>0)的離心率為 ,短軸一個(gè)端點(diǎn)到右焦點(diǎn)的距離為 .
(1)求橢圓C的方程;
(2)設(shè)直線l與橢圓C交于A、B兩點(diǎn),坐標(biāo)原點(diǎn)O到直線l的距離為 ,求△AOB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四個(gè)結(jié)論中正確的個(gè)數(shù)是( ) ①“x2+x﹣2>0”是“x>1”的充分不必要條件
②命題:“x∈R,sinx≤1”的否定是“x0∈R,sinx0>1”.
③“若x= ,則tanx=1,”的逆命題為真命題;
④若f(x)是R上的奇函數(shù),則f(log32)+f(log23)=0.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=xex .
(1)求f(x)的極值;
(2)k×f(x)≥ x2+x在[﹣1,+∞)上恒成立,求k值的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們把焦點(diǎn)相同,且離心率互為倒數(shù)的橢圓和雙曲線稱為一對(duì)“相關(guān)曲線”.已知F1 , F2是一對(duì)相關(guān)曲線的焦點(diǎn),P是橢圓和雙曲線在第一象限的交點(diǎn),當(dāng)∠F1PF2=60°時(shí),這一對(duì)相關(guān)曲線中橢圓的離心率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線C1:y= x2(p>0)的焦點(diǎn)與雙曲線C2: ﹣y2=1的右焦點(diǎn)的連線交C1于第一象限的點(diǎn)M,若C1在點(diǎn)M處的切線平行于C2的一條漸近線,則p=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|x﹣a|,其中a>1
(1)當(dāng)a=2時(shí),求不等式f(x)≥4﹣|x﹣4|的解集;
(2)已知關(guān)于x的不等式|f(2x+a)﹣2f(x)|≤2的解集{x|1≤x≤2},求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) 的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,若(2a﹣c)cosB=bcosC,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 且a1=a2=1,{nSn+(n+2)an}為等差數(shù)列,則a2017= .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com