分析 (1)由條件利用正弦函數(shù)的增區(qū)間,求得f(x)的增區(qū)間.
(2)由條件利用同角三角函數(shù)的基本關系,兩角和的余弦公式,求得cos(α+β)的值.
解答 解:(1)對于函數(shù)$f(x)=2sin({\frac{1}{3}x-\frac{π}{3}})$,令2kπ-$\frac{π}{2}$≤$\frac{x}{3}$-$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,
求得6kπ-$\frac{π}{2}$≤x≤6kπ+$\frac{5π}{2}$,可得函數(shù)的增區(qū)間為[6kπ-$\frac{π}{2}$,6kπ+$\frac{5π}{2}$],k∈Z.
(2)∵$α,β∈[{0,\frac{π}{2}}],f({3α-\frac{π}{2}})=-\frac{16}{17},f({3β+π})=\frac{6}{5}$,
∴2sin(α-$\frac{π}{2}$)=-$\frac{16}{17}$,2sinβ=$\frac{6}{5}$,∴cosα=$\frac{8}{17}$,sinβ=$\frac{3}{5}$,
∴sinα=$\sqrt{{1-cos}^{2}α}$=$\frac{15}{17}$,cosβ=$\sqrt{{1-sin}^{2}β}$=$\frac{4}{5}$,
∴cos(α+β)=cosαcosβ-sinαsinβ=$\frac{8}{17}•\frac{4}{5}$-$\frac{15}{17}•\frac{3}{5}$=-$\frac{13}{85}$.
點評 本題主要考查正弦函數(shù)的增區(qū)間,同角三角函數(shù)的基本關系,兩角和的余弦公式的應用,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
A. | (5,50) | B. | (5,60) | C. | (4,55) | D. | (4,50) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com