18.已知兩直線l1與l2的方向向量分別為$\overrightarrow{{v}_{1}}$=(1,-3,-2),$\overrightarrow{{v}_{2}}$=(-3,9,6),則l1與l2的位置關(guān)系為l1∥l2或重合.

分析 根據(jù)直線l1和l2的方向向量的關(guān)系,可得l1與l2的位置關(guān)系是平行.

解答 解:∵直線l1和l2的方向向量分別為$\overrightarrow{{v}_{1}}$=(1,-3,-2),$\overrightarrow{{v}_{2}}$=(-3,9,6),
且$\overrightarrow{{v}_{1}}$=-3$\overrightarrow{{v}_{2}}$
∴l(xiāng)1∥l2
故答案為:l1∥l2或重合.

點評 本題主要考查直線的方向向量,兩個向量的數(shù)量積公式,兩條直線垂直的判定,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.如圖所示,正方體ABCD-A1B1C1D1的棱長為1,BD∩AC=O,M是線段D1O上的動點,過點M作平面ACD1的垂線交平面A1B1C1D1于點N,則點N到點A距離的最小值為$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)$f(x)=2sin({\frac{1}{3}x-\frac{π}{3}})$.
(1)求f(x)的單調(diào)增區(qū)間;
(2)設(shè)$α,β∈[{0,\frac{π}{2}}],f({3α-\frac{π}{2}})=-\frac{16}{17},f({3β+π})=\frac{6}{5}$,求cos(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.如圖所示,扇形AOB,圓心角AOB的大小等于$\frac{π}{3}$,半徑為2,在半徑OA上有一動點C,過點C作平行于OB的直線交弧AB于點P.設(shè)∠COP=θ(θ∈(0,$\frac{π}{3}$)),則△POC周長與角θ的函數(shù)關(guān)系式f(θ)=$\frac{4\sqrt{3}}{3}$sin($θ+\frac{π}{3}$)+2,θ∈(0,$\frac{π}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.兩個不同的平面α、β,m為α內(nèi)的一條直線,命題p:α⊥β,命題q:m⊥β,則p是q的(  )
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在平面直角坐標系xOy中,點P(x,y)是橢圓$\frac{x^2}{4}+{y^2}=1$上的一個動點,求z=3x+8y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知直線l和平面α,若l∥α,P∈α,則過點P且垂直于l的直線( 。
A.只有一條,不在平面α內(nèi)B.只有一條,且在平面α內(nèi)
C.有無數(shù)條,一定在平面α內(nèi)D.有無數(shù)條,不一定在平面α內(nèi)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.圓C1:x2+y2-2x-6y+1=0與圓C2:x2+y2+4x+2y+1=0的公切線有且僅有( 。
A.1條B.2條C.3條D.4條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.一個物體的運動方程是s=3tcost+x(x為常數(shù)),則其速度方程為( 。
A.v=3cost-3tsint+1B.v=3cost-3tsint
C.v=-3sintD.v=3cost+3tsint

查看答案和解析>>

同步練習(xí)冊答案