【題目】已知橢圓的長(zhǎng)軸長(zhǎng)為6,離心率為.

(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2)設(shè)橢圓C的左右焦點(diǎn)分別為,左右頂點(diǎn)分別為A,B,點(diǎn)M,N為橢圓C上位于x軸上方的兩點(diǎn),且,直線的斜率為,記直線AM,BN的斜率分別為,試證明:的值為定值.

【答案】(1);(2)證明見(jiàn)詳解.

【解析】

1)根據(jù)長(zhǎng)軸及離心率信息,求解,寫出橢圓方程即可;

2)由題可知直線的方程,聯(lián)立方程組求得點(diǎn)坐標(biāo),根據(jù)對(duì)稱性求得N點(diǎn)坐標(biāo),再計(jì)算斜率,即可證明.

(1)由題意,可得,

,,

聯(lián)立解得,,

故橢圓的標(biāo)準(zhǔn)方程為.

(2)證明:如圖,由(1)可知,,,

據(jù)題意,的方程為.

記直線與橢圓的另一個(gè)交點(diǎn)為,

設(shè),,

,根據(jù)對(duì)稱性可得,

聯(lián)立消去,得

,

,∴,,

,

,

的值為定值0.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】據(jù)報(bào)道,全國(guó)很多省市將英語(yǔ)考試作為高考改革的重點(diǎn),一時(shí)間“英語(yǔ)考試該如何改革”引起廣泛關(guān)注,為了解某地區(qū)學(xué)生和包括老師、家長(zhǎng)在內(nèi)的社會(huì)人士對(duì)高考英語(yǔ)改革的看法,某媒體在該地區(qū)選擇了3 000人進(jìn)行調(diào)查,就“是否取消英語(yǔ)聽(tīng)力”問(wèn)題進(jìn)行了問(wèn)卷調(diào)查統(tǒng)計(jì),結(jié)果如下表:

態(tài)度

調(diào)查人群

應(yīng)該取消

應(yīng)該保留

無(wú)所謂

在校學(xué)生

2100人

120人

y人

社會(huì)人士

500人

x人

z人

已知在全體樣本中隨機(jī)抽取1人,抽到持“應(yīng)該保留”態(tài)度的人的概率為0.06.

(1)現(xiàn)用分層抽樣的方法在所有參與調(diào)查的人中抽取300人進(jìn)行問(wèn)卷訪談,問(wèn)應(yīng)在持“無(wú)所謂”態(tài)度的人中抽取多少人?

(2)在持“應(yīng)該保留”態(tài)度的人中,用分層抽樣的方法抽取6人,然后從這6人中隨機(jī)抽取2人,求這2人中恰好有1個(gè)人為在校學(xué)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線過(guò)點(diǎn),其參數(shù)方程為為參數(shù),.為極點(diǎn),軸非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;

(2)已知曲線與曲線交于兩點(diǎn),且,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為3的菱形,∠ABC=60°PA⊥面ABCD,且PA=3F在棱PA上,且AF=1E在棱PD上.

(Ⅰ)若CE∥面BDF,求PEED的值;

(Ⅱ)求二面角B-DF-A的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)有兩個(gè)零點(diǎn),,則下列判斷:①;②;③;④有極小值點(diǎn),且.則正確判斷的個(gè)數(shù)是( )

A. 4個(gè)B. 3個(gè)C. 2個(gè)D. 1個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“工資條里顯紅利,個(gè)稅新政入民心”.隨著2019年新年鐘聲的敲響,我國(guó)自1980年以來(lái),力度最大的一次個(gè)人所得稅(簡(jiǎn)稱個(gè)稅)改革迎來(lái)了全面實(shí)施的階段.某從業(yè)者為了解自己在個(gè)稅新政下能享受多少稅收紅利,繪制了他在26歲-35歲(2009年-2018年)之間各年的月平均收入(單位:千元)的散點(diǎn)圖:(注:年齡代碼1-10分別對(duì)應(yīng)年齡26-35歲)

(1)由散點(diǎn)圖知,可用回歸模型擬合的關(guān)系,試根據(jù)有關(guān)數(shù)據(jù)建立關(guān)于的回歸方程;

(2)如果該從業(yè)者在個(gè)稅新政下的專項(xiàng)附加扣除為3000元/月,試?yán)茫?)的結(jié)果,將月平均收入視為月收入,根據(jù)新舊個(gè)稅政策,估計(jì)他36歲時(shí)每個(gè)月少繳納的個(gè)人所得稅.

附注:參考數(shù)據(jù):,,,,

,,其中:取,.

參考公式:回歸方程中斜率和截距的最小二乘估計(jì)分別為,.

新舊個(gè)稅政策下每月應(yīng)納稅所得額(含稅)計(jì)算方法及稅率表如下:

舊個(gè)稅稅率表(個(gè)稅起征點(diǎn)3500元)

新個(gè)稅稅率表(個(gè)稅起征點(diǎn)5000元)

繳稅

級(jí)數(shù)

每月應(yīng)納稅所得額(含稅)收入個(gè)稅起征點(diǎn)

稅率

每月應(yīng)納稅所得額(含稅)收入個(gè)稅起征點(diǎn)專項(xiàng)附加扣除

稅率

1

不超過(guò)1500元的都分

3

不超過(guò)3000元的都分

3

2

超過(guò)1500元至4500元的部分

10

超過(guò)3000元至12000元的部分

10

3

超過(guò)4500元至9000元的部分

20

超過(guò)12000元至25000元的部分

20

4

超過(guò)9000元至35000元的部分

25

超過(guò)25000元至35000元的部分

25

5

超過(guò)35000元至55000元的部分

30

超過(guò)35000元至55000元的部分

30

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若直線y=a分別與直線y=2x-3,曲線y=ex-xx≥0)交于點(diǎn)A,B,則|AB|的最小值為( 。

A. B. C. eD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,幾何體AMDCNB是由兩個(gè)完全相同的四棱錐構(gòu)成的幾何體,這兩個(gè)四棱錐的底面ABCD為正方形,,平面平面ABCD.

(1)證明:平面平面MDC.

(2),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)點(diǎn)的直線被曲線截得的弦長(zhǎng)為2,則直線的方程為______

查看答案和解析>>

同步練習(xí)冊(cè)答案