12.直線l1:y=$\frac{1}{2}$x+b與l2:y=$\frac{1}{2}$x+b+8關(guān)于點A(4,6)對稱,求b的值.

分析 根據(jù)平行線間的距離公式以及點到直線的距離公式計算即可.

解答 解:直線l1和l2的距離是d=$\frac{8}{\sqrt{{(\frac{1}{2})}^{2}+1}}$,
∴A(4,6)到直線l1:y=$\frac{1}{2}$x+b的距離是:
$\frac{4}{\sqrt{{(\frac{1}{2})}^{2}+1}}$=$\frac{|2-6+b|}{\sqrt{{(\frac{1}{2})}^{2}+1}}$,
解得b=0或8.

點評 本題考查了平行線間的距離公式以及點到直線的距離公式,考查對稱問題,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.空間四邊形的各邊相等,順次連接各邊中點所得的四邊形是正方形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在等邊△ABC中,M為△ABC內(nèi)一動點,∠BMC=120°,則$\frac{MA}{MC}$的最小值是(  )
A.1B.$\frac{3}{4}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=$\frac{ax+b}{{e}^{x}}$(e為自然對數(shù)的底數(shù))在x=-1處的切線方程為ex-y+e=0.
(1)求實數(shù)a,b的值;
(2)若存在不相等的實數(shù)x1,x2,使得f(x1)=f(x2),求證:x1+x2>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.證明:$\frac{cosα}{cot\frac{α}{2}-tan\frac{α}{2}}$=$\frac{1}{2}$sinα

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知$\overrightarrow{AB}$=-$\frac{3}{2}$$\overrightarrow{BC}$,$\overrightarrow{BD}$=-$\frac{3}{5}$$\overrightarrow{DC}$,若$\overrightarrow{AC}$=$λ\overrightarrow{CD}$,則λ等于( 。
A.$\frac{1}{5}$B.-$\frac{1}{5}$C.5D.-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.(1)已知a,b,c,d都是正數(shù),求證:(ab+cd)(ac+bd)≥4abcd;
(2)已知x>0,y>0,2x+y=1,求證:$\frac{1}{x}+\frac{1}{y}$≥3+2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)|$\overline{a}$|=4,|$\overrightarrow$|=3,($\overrightarrow{a}$,$\overrightarrow$)=$\frac{π}{6}$,求$\overrightarrow{a}$+2$\overrightarrow$和$\overrightarrow{a}$-3$\overrightarrow$為邊的平行四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知x∈(0,$\frac{π}{2}$),求函數(shù)f(x)=$\frac{1+cos2x+8si{n}^{2}x}{sin2x}$的最小值.

查看答案和解析>>

同步練習(xí)冊答案