18.若雙曲線C1:$\frac{{x}^{2}}{a}-\frac{{y}^{2}}{3}$=1(a>0)與雙曲線C2:y2-x2=1的離心率相同,則實(shí)數(shù)a等于( 。
A.1B.3C.4D.9

分析 求得等軸雙曲線的離心率為$\sqrt{2}$,由題意可得雙曲線C1離心率為$\frac{\sqrt{a+3}}{\sqrt{a}}$=$\sqrt{2}$,解方程即可得到a的值.

解答 解:雙曲線C2:y2-x2=1為等軸雙曲線,
可得離心率為$\sqrt{2}$,
由雙曲線C1:$\frac{{x}^{2}}{a}-\frac{{y}^{2}}{3}$=1可得離心率為$\frac{\sqrt{a+3}}{\sqrt{a}}$,
由題意可得$\frac{\sqrt{a+3}}{\sqrt{a}}$=$\sqrt{2}$,
解得a=3.
故選:B.

點(diǎn)評(píng) 本題考查雙曲線的離心率公式的運(yùn)用,注意雙曲線的基本量的關(guān)系,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線與直線3x-y+1=0平行,F(xiàn)1、F2是雙曲線C的左、右焦點(diǎn),M是雙曲線C上一點(diǎn),且|MF1|=$\frac{3}{2}$|MF2|=6,則雙曲線的焦距長(zhǎng)為(  )
A.6B.2C.2$\sqrt{10}$D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知3A${\;}_{x}^{3}$=$2{A}_{x+1}^{2}$$+6{A}_{x}^{2}$,則x等于( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=mx-$\frac{m}{x}$,g(x)=3lnx.
(1)當(dāng)m=4時(shí),求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程;
(2)若x∈(1,$\sqrt{e}$](e是自然對(duì)數(shù)的底數(shù))時(shí),不等式f(x)-g(x)<3恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知sinβ+cosβ=$\frac{\sqrt{5}}{5}$,且π<β<2π.
(1)求sinβcosβ、sinβ-cosβ的值;
(2)求sinβ、cosβ、tanβ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在直角坐標(biāo)系中,作出下列各角,在0°~360°范圍內(nèi)找出與其終邊相同的角,并判定它是第幾象限角.
(1)360°;(2)720°;(3)2012°;(4)-120°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.若$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是兩個(gè)單位向量,且(2$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$)•(-2$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$)=2$\sqrt{2}$-1,則$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$的夾角為( 。
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{3π}{4}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.sin59°•cos89°-cos59°•sin89°的值為-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年重慶市高二上學(xué)期入學(xué)考試數(shù)學(xué)試卷(解析版) 題型:填空題

設(shè)等比數(shù)列的前項(xiàng)和為,已知,則 .

查看答案和解析>>

同步練習(xí)冊(cè)答案