分析 (1)連結(jié)B1E并延長(zhǎng),交BC于點(diǎn)F,連結(jié)AB1,由三角形相似可得F為BC中點(diǎn).再由G為△ABC的重心,得到GE∥AB1,由線面平行的判定得答案;
(2)由已知求出三棱柱的高,把三棱錐E-ABC的體積轉(zhuǎn)化為三棱錐C1-ABC的體積得答案.
解答 (1)證明:如圖,
連結(jié)B1E并延長(zhǎng),交BC于點(diǎn)F,連結(jié)AB1,
∵△B1EC1∽△FEB,且$BE=\frac{1}{2}E{C}_{1}$,
∴$BF=\frac{1}{2}BC$,則點(diǎn)F為BC中點(diǎn).
∵G為△ABC的重心,∴$\frac{FG}{FA}=\frac{FE}{F{B}_{1}}=\frac{1}{3}$,
∴GE∥AB1,
又AB1?面AA1B1B,GE?面AA1B1B,∴GE∥面AA1B1B;
(2)解:∵側(cè)面AA1B1B⊥底面ABC,過A1作A1H⊥AB于H,
則A1H⊥面ABC,則A1H為三棱柱的高,
又側(cè)棱AA1與底面ABC成60°的角,AA1=2,∴${A}_{1}H=\sqrt{3}$.
又底面ABC是邊長(zhǎng)為2的正三角形,∴${S}_{△ABC}=\frac{1}{2}×2×\sqrt{3}=\sqrt{3}$.
∴${V}_{E-ABC}=\frac{1}{3}{V}_{{C}_{1}-ABC}=\frac{1}{3}×\sqrt{3}×\frac{\sqrt{3}}{3}=\frac{1}{3}$.
點(diǎn)評(píng) 本小題主要考查空間線面關(guān)系、幾何體的體積等知識(shí),考查數(shù)形結(jié)合、化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,以及空間想象能力、推理論證能力和運(yùn)算求解能力,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-2,1) | B. | (1,4) | C. | {-1,0} | D. | {2,3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -45 | B. | -10 | C. | 45 | D. | 65 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,+∞) | B. | ($\frac{2\sqrt{3}}{3}$,+∞) | C. | ($\frac{\sqrt{5}+1}{2}$,+∞) | D. | ($\sqrt{2}$+1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$-1 | B. | $\sqrt{2}$+1 | C. | $\sqrt{3}$-1 | D. | $\sqrt{3}$+1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com