分析 (1)連結(jié)BD,BD∩AC=F,連接EF,推導(dǎo)出EF∥PB,由此能證明PB∥平面ACE.
(2)取AB的中點(diǎn)Q,連結(jié)PQ、CQ,以Q點(diǎn)為原點(diǎn),BA所在的直線為x軸,QC所在的直線為y軸,QP所在的直線為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角A-PC-D的余弦值.
解答 解:(1)連結(jié)BD,BD∩AC=F,連接EF,
∵四棱錐的底面為菱形,∴F為BD中點(diǎn),
又∵E是DP中點(diǎn),∴在BDP中,EF是中位線,∴EF∥PB,
又∵EF⊆平面ACE,而PB?平面ACE,∴PB∥平面ACE.…(6分)
(2)取AB的中點(diǎn)Q,連結(jié)PQ、CQ,
∵菱形ABCD,且∠ABC=60°,∴正△ABC,∴CQ⊥AB,
∵AP=PB=√2,AB=PC=2,∴CQ=√3,且等腰直角△PAB,即∠APB=90°,PQ⊥AB.
∴AB⊥平面PQC,且PQ=1,∴PQ2+CQ2=CP2,∴PQ⊥CQ.如圖,以Q點(diǎn)為原點(diǎn),BA所在的直線為x軸,QC所在的直線為y軸,
QP所在的直線為z軸,建立空間直角坐標(biāo)系,
則Q(0,0,0),A(1,0,0),C(0,√3,0),P(0,0,1),D(2,0,0,)…(9分)
平面APC上,→AP=(-1,0,1),→CP=(0,-√3,1),
設(shè)平面APC的法向量為→n=(x1,y1,z1),則有{−x1+z1=0−√3y1+z1=0⇒{x1=√3y1=1z1=√3,即→n=(√3,1,√3),…(11分)
設(shè)平面DPC的法向量為→m=(x2,y2,z2),
∵→CD=(2,0,0),→CP=(0,-√3,1),
則有{2x2=0−√3y2+z2=0,可取→m=(0,1,√3),…(13分)
∴cos<→m,→n>=→m•→n|→m|•|→n|=4√7•2=2√77,
∴二面角A-PC-D的余弦值為2√77.…(15分)
點(diǎn)評(píng) 本題考查線面平行的證明,考查二面角的余弦值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-4,-1) | B. | (-1,1) | C. | (1,2) | D. | (-4,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2sin4 | B. | -2sin4 | C. | 2cos4 | D. | -2cos4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①② | B. | ③④ | C. | ①③ | D. | ②④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2\sqrt{2} | B. | 2 | C. | \sqrt{2} | D. | 1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com