精英家教網 > 高中數學 > 題目詳情

【題目】“累積凈化量()”是空氣凈化器質量的一個重要衡量指標,它是指空氣凈化器從開始使用到凈化效率為時對顆粒物的累積凈化量,以克表示.根據《空氣凈化器》國家標準,對空氣凈化器的累計凈化量(有如下等級劃分:

累積凈化量(克)

12以上

等級

為了了解一批空氣凈化器(共2000臺)的質量,隨機抽取臺機器作為樣本進行估計,已知這臺機器的累積凈化量都分布在區(qū)間中.按照均勻分組,其中累積凈化量在所有數據有 ,并繪制了如下頻率分布直方圖:

1的值及頻率分布直方圖中的;

2以樣本估計總體,試估計這批空氣凈化器(共2000臺)中等級為的空氣凈化器有多少臺?

3從累積凈化量在的樣本中隨機抽取2臺,求恰好有1臺等級為的概率.

【答案】12)這批空氣凈化器等級為的空氣凈化器共有560. 3

【解析】【試題分析】(1)依據頻率分布直方圖分析求解;(2)依據題設借助頻率分布直方圖求解;(3)運用列舉法及古典概型的計算公式分析求解:

(Ⅰ)因為之間的數據一共有6個,

再由頻率分布直方圖可知:落在之間的頻率為

因此,

(Ⅱ)由頻率分布直方圖可知:落在之間共: 臺,

又因為在之間共4臺,

∴落在之間共28臺,

故,這批空氣凈化器等級為的空氣凈化器共有560臺.

(Ⅲ)設“恰好有1臺等級為”為事件

依題意,落在之間共有6臺.記為: ,屬于國標級有4臺,我們記為: ,

則從中隨機抽取2個,所有可能的結果有15種,它們是: ,

而事件的結果有8種,它們是:

因此事件的概率為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐PABCD中,AB∥CD ,且∠BAP=∠CDP =90°.

(1).證明:平面PAB⊥平面PAD;

(2).若PA=PD=AB=DC, ∠APD =90°,且四棱錐PABCD的體積為,求該四棱錐的側面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點在橢圓上,且橢圓的離心率為.

(1)求橢圓的方程;

(2)若為橢圓的右頂點,點是橢圓上不同的兩點(均異于)且滿足直線斜率之積為.試判斷直線是否過定點,若是,求出定點坐標,若不是,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖(1)是一個水平放置的正三棱柱 是棱的中點.正三棱柱的正(主)視圖如圖(2)

()求正三棱柱的體積;

()證明: ;

()圖(1)中垂直于平面的平面有哪幾個?(直接寫出符合要求的平面即可,不必說明或證明)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】甲、乙、丙三人參加微信群搶紅包游戲,規(guī)則如下:每輪游戲發(fā)個紅包,每個紅包金額為元,已知在每輪游戲中所產生的個紅包金額的頻率分布直方圖如圖所示

1的值,并根據頻率分布直方圖,估計紅包金額的眾數;

2以頻率分布直方圖中的頻率作為概率,若甲、乙、丙三人從中各搶到一個紅包,其中金額在的紅包個數為,求的分布列和期望

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】地為綠化環(huán)境,移栽了銀杏樹棵,梧桐樹.它們移栽后的成活率分別

、,每棵樹是否存活互不影響,在移栽的棵樹中:

(1)求銀杏樹都成活且梧桐樹成活的概率;

(2)求成活的棵樹的分布列與期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線的準線與軸交于點,過點做圓的兩條切線,切點為.

(1)求拋物線的方程;

(2)若直線是講過定點的一條直線,且與拋物線交于兩點,過定點的垂線與拋物線交于兩點,求四邊形面積的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的左焦點與拋物線 的焦點重合,橢圓的離心率為,過點作斜率不為0的直線,交橢圓兩點,點,且為定值.

(1)求橢圓的方程;

(2)求面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的左右焦點分別為若橢圓上一點滿足,且橢圓過點,過點的直線與橢圓交于兩點

1)求橢圓的方程;

2)若點是點軸上的垂足,延長交橢圓,求證: 三點共線.

查看答案和解析>>

同步練習冊答案