3.函數(shù)f(x)=$\frac{{x}^{2}-3x+4}{x}$,g(x)=mx+2,若對任意的x1∈[1,3],總存在x2∈[1,3],使得f(x2)<g(x1),則實數(shù)m的取值范圍是(-$\frac{1}{3}$,+∞).

分析 命題“對任意的x1∈[1,3],總存在x2∈[1,3],使得g(x1)>f(x2)”?g(x)最小值>f(x)最小值,只要g(x)最小值>1即可.

解答 解:∵x∈[1,3],
∴f(x)=x+$\frac{4}{x}$-3≥4-3=1,
當且僅當x=$\frac{4}{x}$,即x=2時取等號.∴f(x)最小值=1,
命題“對任意的x1∈[1,3],總存在x2∈[1,3],使得g(x1)>f(x2)”?g(x)最小值>f(x)最小值
只要g(x)最小值>1即可.
當m>0時,g(x)=mx+2是增函數(shù),
對任意的x1∈[1,3],g(x)min=g(1)=2+m.
由題設知2+m>1,解得m>-1,
∴m>0
當m<0時,g(x)=mx+2是減函數(shù),
對任意的x1∈[1,3],g(x)min=g(3)=3m+2.
由題設知3m+2>1,解得m>-$\frac{1}{3}$,
∴-$\frac{1}{3}$<m<0,
當m=0時,g(x)=2>1,成立.
綜上所述,m>-$\frac{1}{3}$,
故答案為:(-$\frac{1}{3}$,+∞).

點評 本題考查函數(shù)恒成立問題的應用,對數(shù)學思維的要求比較高,要求學生理解“存在”、“恒成立”,以及運用一般與特殊的關(guān)系進行否定,本題有一定的探索性.綜合性強,難度大,易出錯.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

13.已知正方體ABCD-A1B1C1D1的邊長為a,則異面直線AC1與BD的距離為( 。
A.$\sqrt{3}$aB.$\frac{\sqrt{3}}{2}$aC.$\frac{\sqrt{6}}{3}$aD.$\frac{\sqrt{6}}{6}$a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1,求一組斜率為m的平行弦的中點的軌跡.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.給出下列隨機變量:
①廣州白云機場侯機室中一天的旅客數(shù)量X;
②高要某氣象站觀察到一天中高要的氣溫X;
③深圳歡樂谷一日接待游客的數(shù)量X;
④西江大橋一天經(jīng)過的車輛數(shù)X.
其中是離散型隨機變量的為( 。
A.①②③④B.①②④C.①④D.①③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)f(x)=$\frac{1+2lnx}{{x}^{2}}$+2f′(1)x.
(I)求函數(shù)f(x)在點(1,f(1))處的切線方程;
(Ⅱ)若關(guān)于x的方程f(x)=a+2f′(1)x在[$\frac{1}{e}$,e]上有兩個不同的實數(shù)根,求實數(shù)a的取值范圍;
(Ⅲ)若存在x1>x2>0,使f(x1)-klnx1≤f(x2)-klnx2成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知函數(shù)f(x)=sinx+λcosx(λ∈R)的圖象關(guān)于直線x=-$\frac{π}{4}$對稱,把函數(shù)f(x)的圖象上,每個點的橫坐標擴大到原來的2倍,縱坐標不變,再將所得函數(shù)圖象向右平移$\frac{π}{3}$個單位長度,得到函數(shù)g(x)的圖象,則函數(shù)g(x)的一個對稱中心是( 。
A.($\frac{π}{6}$,0)B.($\frac{π}{4}$,0)C.($\frac{2π}{3}$,0)D.($\frac{5π}{6}$,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.f(x)=sin($\frac{π}{3}$-2x).
(1)求f(x)的最小正周期;
(2)求f(x)的最值及相應的x值;
(3)求f(x)的單調(diào)增區(qū)間;
(4)其圖象沿x軸經(jīng)過怎樣的平移可以得到關(guān)于y軸對稱的圖象?
(5)若m≤f(x)≤求n,求m,n的取值范圍;
(6)若f(x1)≤f(x)≤f(x2),求f(x1),f(x2),|x1-x2|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知x、y滿足不等式組$\left\{\begin{array}{l}{x≥0}\\{x-y≤0}\\{4x+3y≤14}\end{array}\right.$,設(x+2)2+(y+1)2的最小值為ω,則函數(shù)f(t)=sin(ωt+$\frac{π}{6}$)的最小正周期為$\frac{2π}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.焦點在x軸上,焦距為10,且與雙曲線$\frac{{y}^{2}}{4}$-x2=1有相同漸近線的雙曲線的標準方程是$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{20}$=1.

查看答案和解析>>

同步練習冊答案