13.已知函數(shù)f(x)=x2-$\frac{a}{x}$(a∈R),則下列結(jié)論正確的是( 。
A.?a∈R,f(x)是偶函數(shù)B.?a∈R,f(x)是奇函數(shù)
C.?a∈(0,+∞),f(x)在(-∞,0)上是增函數(shù)D.?a∈(0,+∞),f(x)在(0,+∞)上是減函數(shù)

分析 A.根據(jù)函數(shù)偶函數(shù)的定義進(jìn)行判斷.
B.根據(jù)函數(shù)奇函數(shù)的定義進(jìn)行判斷.
C.求函數(shù)的導(dǎo)數(shù),結(jié)合函數(shù)單調(diào)性和導(dǎo)數(shù)的關(guān)系進(jìn)行判斷.
D.求函數(shù)的導(dǎo)數(shù),利用函數(shù)單調(diào)性和導(dǎo)數(shù)的關(guān)系進(jìn)行判斷.

解答 解:A.當(dāng)a=0時(shí),f(x)=x2,則f(-x)=f(x),此時(shí)函數(shù)f(x)是偶函數(shù),故A正確,
B.若f(x)=x2-$\frac{a}{x}$是奇函數(shù),
則f(-x)=-f(x),即x2+$\frac{a}{x}$=-x2+$\frac{a}{x}$,
即x2=-x2,恒成立,則x=0,此時(shí)函數(shù)f(x)無(wú)意義,故?a∈R,f(x)是奇函數(shù)錯(cuò)誤,故B錯(cuò)誤,
C.函數(shù)的導(dǎo)數(shù)f′(x)=2x+$\frac{a}{{x}^{2}}$=$\frac{2{x}^{3}+a}{{x}^{2}}$,當(dāng)x<0且a>0時(shí),f′(x)<不恒成立,即此時(shí)函數(shù)f(x)在(-∞,0)上不是增函數(shù),故C錯(cuò)誤,
D..函數(shù)的導(dǎo)數(shù)f′(x)=2x+$\frac{a}{{x}^{2}}$,當(dāng)x>0且a>0時(shí),f′(x)>0,即此時(shí)函數(shù)f(x)為增函數(shù),故D錯(cuò)誤,
故選:A.

點(diǎn)評(píng) 本題主要考查命題的真假判斷,涉及函數(shù)奇偶性,以及單調(diào)性的判斷,利用定義法和導(dǎo)數(shù)法是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.定義某種運(yùn)算M=a?b,運(yùn)算原理如圖所示,則式子$(2tan\frac{π}{4})?sin\frac{π}{2}+(4cos\frac{π}{3})?{(\frac{1}{3})^{-1}}$的值為( 。
A.4B.8C.11D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知等差數(shù)列{an},若a1=-11,a4+a6=-6,則an=2n-13.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.某人經(jīng)營(yíng)一個(gè)抽獎(jiǎng)游戲,顧客花費(fèi)2元可購(gòu)買一次游戲機(jī)會(huì),每次游戲中,顧客從裝有1個(gè)人黑球,3個(gè)紅球,6個(gè)白球的不透明袋子中依次不放回地摸出3個(gè)球(除顏色外其他都相同),根據(jù)摸出的球的顏色情況進(jìn)行兌獎(jiǎng),顧客獲得一等獎(jiǎng)、二等獎(jiǎng)、三等獎(jiǎng)、四等獎(jiǎng)時(shí)分別可領(lǐng)取獎(jiǎng)金a元、10元、5元、1元.若經(jīng)營(yíng)者將顧客摸出的3個(gè)球的顏色情況分成以下類別:A:1個(gè)黑球2個(gè)紅球;B:3個(gè)紅球;C:恰有1個(gè)白球;D:恰有2個(gè)白球;E:3個(gè)白球.且經(jīng)營(yíng)者計(jì)劃將五種類別按照發(fā)生機(jī)會(huì)從小到大的順序分別對(duì)應(yīng)中一等獎(jiǎng)、中二等獎(jiǎng)、中三等獎(jiǎng)、中四等獎(jiǎng)、不中獎(jiǎng)五個(gè)層次.
(1)請(qǐng)寫出一至四等獎(jiǎng)分別對(duì)應(yīng)的類別(寫出字母即可);
(2)若經(jīng)營(yíng)者不打算在這個(gè)游戲的經(jīng)營(yíng)中虧本,求a的最大值;
(3)若a=50,當(dāng)顧客摸出的第一個(gè)球是紅球時(shí),求他領(lǐng)取的獎(jiǎng)金的平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知△ABC中,A、B、C所對(duì)的邊分別為a、b、c,且bsinB=(sinA-sinC)(a+c)數(shù)列an=n2n-1(|sinnA|+|cosnA|),
(1)求A;  
(2)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1且4Sn=n(an+an+1).
(1)求a2,a3,a4;
(2)猜想數(shù)列{an}的通項(xiàng)公式,并用數(shù)學(xué)歸納法加以證明;
(3)設(shè)數(shù)列{$\frac{{a}^{n}}{{2}^{n}}$}的前n項(xiàng)和為Tn,求證Tn<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.函數(shù)$y=sinx({-\frac{π}{3}<x<\frac{2π}{3}})$的值域用區(qū)間表示為(-$\frac{\sqrt{3}}{2}$,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知函數(shù)y=f(x)是定義在R上的偶函數(shù),當(dāng)x≤0時(shí),f(x)=x+2,那么不等式2f(x)-1>0的解集是(-$\frac{3}{2}$,$\frac{3}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.函數(shù)f(x)=2sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分圖象如圖所示,則下列結(jié)論正確的是( 。
A.函數(shù)f(x)的對(duì)稱中心為($\frac{π}{6}$+kπ,0)(k∈Z)B.f(-$\frac{7π}{12}$)=-2
C.函數(shù)f(x)在[$\frac{3π}{2}$,2π]上是減函數(shù)D.函數(shù)f(x)在[π,$\frac{4π}{3}$]上是減函數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案