8.某程序框圖如圖所示,運(yùn)行相應(yīng)該程序,那么輸出的k的值是4.

分析 模擬執(zhí)行程序框圖,依次寫出每次循環(huán)得到的S,k的值,當(dāng)S=2059時不滿足條件S<100,退出循環(huán),輸出k的值為4.

解答 解:模擬執(zhí)行程序框圖,可得
k=0,S=0
滿足條件S<100,S=1,k=1
滿足條件S<100,S=3,k=2
滿足條件S<100,S=11,k=3
滿足條件S<100,S=2059,k=4
不滿足條件S<100,退出循環(huán),輸出k的值為4.
故答案為:4.

點(diǎn)評 本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖,正確依次寫出每次循環(huán)得到的S,k的值是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知x,y均為正實(shí)數(shù),且$\frac{1}{x+2}+\frac{1}{y+2}=\frac{1}{6}$,則x+y的最小值為( 。
A.24B.32C.20D.28

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知實(shí)數(shù)x、y滿足不等式組$\left\{\begin{array}{l}y≥1\\ x-y≥0\\ x+2y-6≤0\end{array}\right.$時,目標(biāo)函數(shù)z=2x+y的最大值為( 。
A.3B.6C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在復(fù)平面內(nèi),復(fù)數(shù)z=$\frac{3+5i}{1+i}$(i為虛數(shù)單位)對應(yīng)點(diǎn)的坐標(biāo)是( 。
A.(1,4)B.(4,-1)C.(4,1)D.(-1,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知f(x)=-x+sinx,命題p:?x∈(0,π),f(x)<0,則  ( 。
A.p是真命題,¬p:?x∈(0,π),f(x)≥0B.p是假命題,¬p:?x∈(0,π),f(x)≥0
C.p是假命題,¬p:?x∈(0,π),f(x)≥0D.p是真命題,¬p:?x∈(0,π),f(x)≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.閱讀材料:空間直角坐標(biāo)系O-xyz中,過點(diǎn)P(x0,y0,z0)且一個法向量為$\overrightarrow{n}$=(a,b,c)的平面α的方程為a(x-x0)+b(y-y0)+c(z-z0)=0;過點(diǎn)P(x0,y0,z0)且個方向向量為$\overrightarrowp0spwyw$=(u,v,w)(uvw≠0)的直線l的方程為$\frac{x-{x}_{0}}{u}$=$\frac{y-{y}_{0}}{v}$=$\frac{z-{z}_{0}}{w}$,閱讀上面材料,并解決下面問題:已知平面α的方程為3x-5y+z-7=0,直線l是兩個平面x-3y+7=0與4y+2z+1=0的交線,則直線l與平面α所成角的大小為( 。
A.arcsin$\frac{\sqrt{10}}{35}$B.arcsin$\frac{\sqrt{7}}{5}$C.arcsin$\frac{\sqrt{7}}{15}$D.arcsin$\frac{\sqrt{14}}{55}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,-π<φ<0)的部分圖象如圖所示,為了得到g(x)=Acosωx的圖象,只需將函數(shù)y=f(x)的圖象(  )
A.向左平移$\frac{2π}{3}$個單位長度B.向左平移$\frac{π}{3}$個單位長度
C.向右平移$\frac{2π}{3}$個單位長度D.向右平移$\frac{π}{3}$個單位長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列關(guān)于命題的說法錯誤的是( 。
A.命題“若x2-3x+2=0,則x=2”的逆否命題為“若x≠2,則x2-3x+2≠0”
B.“a=2”是“函數(shù)f(x)=logax在區(qū)間(0,+∞)上為增函數(shù)”的充分不必要條件
C.若命題p:?n∈N,2n>1000,則¬p:?n∈N,2n>1000
D.命題“?x∈(-∞,0),2x<3x”是假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)函數(shù)f(x)=lnx,g(x)=$\frac{m(x+n)}{x+1}$(m>0).
(1)當(dāng)m=1時,函數(shù)y=f(x)與y=g(x)在x=1處的切線互相垂直,求n的值;
(2)若對任意x>0,恒有|f(x)|≥|g(x)|成立,求實(shí)數(shù)n的值及實(shí)數(shù)m的最大值.

查看答案和解析>>

同步練習(xí)冊答案