1.已知函數(shù)$f(x)={log_a}({x^2}+2x-3)$,若f(2)<0,則此函數(shù)的單調(diào)遞增區(qū)間是( 。
A.(1,+∞)∪(-∞,-3)B.(1,+∞)C.(-∞,-1)D.(-∞,-3)

分析 令t=x2+2x-3>0,求得函數(shù)的定義域,根據(jù)f(2)=loga5<0,可得0<a<1,f(x)=g(t)=logat,本題即求函數(shù)t在定義域內(nèi)的減區(qū)間,再利用二次函數(shù)的性質(zhì)得出結(jié)論.

解答 解:令t=x2+2x-3>0,可得x<-3,或 x>1,故函數(shù)的定義域?yàn)閧x|x<-3,或 x>1}.
根據(jù)f(2)=loga5<0,可得0<a<1,
f(x)=g(t)=logat,本題即求函數(shù)t在定義域內(nèi)的減區(qū)間.
再利用二次函數(shù)的性質(zhì)求得函數(shù)t在定義域內(nèi)的減區(qū)間為(-∞,-3),
故選:D.

點(diǎn)評(píng) 本題主要考查復(fù)合函數(shù)的單調(diào)性,對(duì)數(shù)函數(shù)、二次函數(shù)的性質(zhì),體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在等比數(shù)列{an}中,若a1=1,a4=27.
(1)求a3
(2)求數(shù)列通項(xiàng)公式an
(3)求數(shù)列{an}的前n項(xiàng)的和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.為了解某社區(qū)居民的家庭年收入與年支出的關(guān)系,隨機(jī)調(diào)查了該社區(qū)5戶家庭,得到如下統(tǒng)計(jì)數(shù)據(jù)表:
收入x(萬元)8.28.610.011.311.9
支出y(萬元)6.27.58.08.59.8
根據(jù)上表可得回歸直線方程$\hat y=\hat bx+\hat a$,其中$\hat b=0.76$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$,據(jù)此估計(jì),該社區(qū)一戶居民年收入為15萬元家庭的年支出為11.8萬元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.以橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1內(nèi)一點(diǎn)P(1,1)為中點(diǎn)的弦所在的直線方程是( 。
A.3x-4y+2=0B.3x+4y-7=0C.3x-4y+7=0D.3x-4y-2=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)全集U={x∈Z|-2<x<4},集合S與T都為U的子集,S∩T={2},(∁US)∩T={-1},(∁US)∩(∁UT)={1,3},則下列說法正確的是( 。
A.0屬于S,且0屬于TB.0屬于S,且0不屬于T
C.0不屬于S但0屬于TD.0不屬于S,也不屬于T

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知過點(diǎn)A(0,1)且斜率為k的直線l與圓C:(x-2)2+(y-3)2=1相交于M、N兩點(diǎn)
(1)求實(shí)數(shù)k的取值范圍;
(2)求證:$\overrightarrow{AM}•\overrightarrow{AN}$為定值;
(3)若O為坐標(biāo)原點(diǎn),且$\overrightarrow{OM}•\overrightarrow{ON}=12$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在高程為5米的地面上挖一高程為兩米的基坑.挖方邊坡為1:1,完成其標(biāo)高投影圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.解關(guān)于x的不等式$\frac{{{x^2}+1}}{{{x^2}-3x+2}}$>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)x∈R,若函數(shù)f(x)為單調(diào)函數(shù),且對(duì)任意實(shí)數(shù)x,都有f[f(x)-ex]=e+1成立,則f(2)的值為e2+1.

查看答案和解析>>

同步練習(xí)冊(cè)答案