8.設(shè)a,b大于0,則a+$\frac{1}$,b+$\frac{1}{a}$的值(  )
A.都大于2B.至少有一個(gè)不大于2
C.都小于2D.至少有一個(gè)不小于2

分析 利用反證法:假設(shè)a+$\frac{1}$,b+$\frac{1}{a}$都小于2,再利用基本不等式的性質(zhì)得出矛盾

解答 解:假設(shè)a+$\frac{1}$,b+$\frac{1}{a}$都小于2,
∴a+$\frac{1}$+b+$\frac{1}{a}$<4
∵a,b大于0,∴a+$\frac{1}$+b+$\frac{1}{a}$=(a+$\frac{1}{a}$)+(b+$\frac{1}$)≥2+2=4,
這與假設(shè)相矛盾,
故假設(shè)不成立,
故則a+$\frac{1}$,b+$\frac{1}{a}$的值至少有一個(gè)不小于2,
故選:D.

點(diǎn)評(píng) 本題考查了反證法、基本不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知直角三角形ABC,三邊長分別為3、4、5,求三角形內(nèi)切圓半徑,設(shè)圓上任一點(diǎn)P,求PA2+PB2+PC2的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.4本不同的書分給兩人,共有不同的分法種數(shù)為( 。
A.4B.8C.12D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.函數(shù)y=$\frac{2x}{x+1}$的值域?yàn)閧y|y≠2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.如圖,正方體ABCD-A1B1C1D1的棱長為4,P為BC的中點(diǎn),Q為線段CC1上的動(dòng)點(diǎn)(異于C點(diǎn)),過點(diǎn)A、P、Q的平面截面記為M.
則當(dāng)CQ∈(0,2]時(shí)(用區(qū)間或集合表示),M為四邊形; 
當(dāng)CQ=2時(shí)(用數(shù)值表示),M為等腰梯形;
當(dāng)CQ=4時(shí),M的面積為8$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在周長為20的扇形中,當(dāng)扇形的面積取最大值時(shí),扇形的半徑為( 。
A.3B.2C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,△ABC中,O是BC的中點(diǎn),AB=AC,AO=2OC=2.將△BAO沿AO折起,使B點(diǎn)與圖中B'點(diǎn)重合.
(1)求證:AO⊥平面B'OC;
(2)當(dāng)三棱錐B'-AOC的體積取最大時(shí),求二面角A-B'C-O的余弦值;
(3)在(2)的條件下,試問在線段B'A上是否存在一點(diǎn)P,使CP與平面B'OA所成的角的正弦值為$\frac{{\sqrt{5}}}{3}$?證明你的結(jié)論,并求AP的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知某射手射擊一次,擊中目標(biāo)的概率是$\frac{2}{5}$.
(1)求連續(xù)射擊5次,恰有3次擊中目標(biāo)的概率;
(2)求連續(xù)射擊5次,擊中目標(biāo)的次數(shù)X的數(shù)學(xué)期望和方差.
(3)假設(shè)連續(xù)2次未擊中目標(biāo),則中止其射擊,求恰好射擊5次后,被中止射擊的概率.(本題結(jié)果用分?jǐn)?shù)表示即可).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知(1+sint)(1+cost)=$\frac{5}{4}$,則$\frac{1}{sint}$+$\frac{1}{cost}$的值為-$\frac{4}{3}$-$\frac{2\sqrt{10}}{15}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案