1.若a>b>0,下列命題為真命題的是( 。
A.a2<b2B.a2<abC.$\frac{a}$<1D.$\frac{1}{a}$>$\frac{1}$

分析 根據(jù)不等式的基本性質(zhì),及函數(shù)的單調(diào)性,判斷四個答案的真假,可得結(jié)論.

解答 解:∵a>b>0,
∴a2>b2,故A錯誤;
a2>ab,故B錯誤;
$\frac{a}$<1,故C正確;
ab>0,$\frac{a}{ab}>\frac{ab}$,即$\frac{1}{a}<\frac{1}$,故D錯誤;
故選:C

點評 本題以命題的真假判斷與應(yīng)用為載體,考查了不等式的基本性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知橢圓的中心點在原點,離心率e=$\frac{1}{2}$,且它的一個焦點與拋物線y2=-4x的焦點重合,則此橢圓方程為$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=sinx+$\frac{2}{sinx}$,試判斷f(x)在(0,π)內(nèi)的增減性,且證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,長方體ABCD-A1B1C1D1中,AB=2,BC=CC1=1,點P是CD上一點,PC=tPD.
(1)若t=$\frac{1}{3}$,求證:A1C⊥平面PBC1;
(2)設(shè)t=1,t=3所對應(yīng)的點P分別為點P1,P2,求二面角P1-BC1-P2的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.觀察下列等式:1=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{6}$;1=$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+$\frac{1}{12}$;1=$\frac{1}{2}$+$\frac{1}{5}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{20}$;…以此類推,1=$\frac{1}{2}$+$\frac{1}{6}$+$\frac{1}{7}$+$\frac{1}{n}$+$\frac{1}{20}$+$\frac{1}{30}$+$\frac{1}{42}$,其中n∈N*,則n=12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=$\sqrt{3}$sinωx+cosωx(ω>0)的圖象與x軸交點的橫坐標(biāo)構(gòu)成一個公差為$\frac{π}{2}$的等差數(shù)列,把函數(shù)f(x)的圖象沿x軸向左平移$\frac{π}{6}$個單位,得到函數(shù)g(x)的圖象.若在區(qū)間[0,π]上隨機取一個數(shù)x,則事件“g(x)≥$\sqrt{3}$”發(fā)生的概率為( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.為了了解甲乙丙三所學(xué)校高三數(shù)學(xué)模擬考試的情況,現(xiàn)采取分層抽樣的方法從甲校的1260份,乙校的720份,丙校的900份模擬試卷中抽取試卷進(jìn)行調(diào)研,如果從丙校抽取了50份,那么這次調(diào)研一共抽查的試卷份數(shù)為160.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知等差數(shù)列{an}的前n項和為Sn,且a1=1,S11=66.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足bn=2an,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=1-$\sqrt{1-2x}$,g(x)=lnx,對于任意m≤$\frac{1}{2}$,都存在n∈(0,+∞),使得f(m)=g(n),則n-m的最小值為(  )
A.e-$\frac{1}{2}$B.1C.$\sqrt{e}$-$\frac{3}{8}$D.$\frac{3}{4}$

查看答案和解析>>

同步練習(xí)冊答案