20.若(a+b)n展開式的第4項(xiàng)和第7項(xiàng)的系數(shù)相等,則該展開式共有( 。
A.8項(xiàng)B.9項(xiàng)C.10項(xiàng)D.11項(xiàng)

分析 根據(jù)二次展開式的性質(zhì)即可求出n的值,即可求出展開式的項(xiàng)數(shù).

解答 解:若(a+b)n展開式的第4項(xiàng)和第6項(xiàng)的系數(shù)相等,可得 Cn3=Cn6,∴n=9,
故該展開式的項(xiàng)數(shù)是1+9=10,
故選:C.

點(diǎn)評 本題主要考查二項(xiàng)式系數(shù)的性質(zhì),求出n=9,是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.命題p:若2x≥2y,則1gx≥1gy;
命題q:若隨機(jī)變量ξ服從正態(tài)分布N(3,σ2),P(ξ≤6)=0.72,則P(ξ≤0)=0.28.
下列命題為真命題的是( 。
A.p∧qB.¬p∧qC.p∨¬qD.¬p∧¬q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知遞減等差數(shù)列{an}的前三項(xiàng)和為18,前三項(xiàng)的乘積為66,求數(shù)列的通項(xiàng)公式,并判斷-34是該數(shù)列的項(xiàng)嗎?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在等差數(shù)列{an}中,a3=15,a9=-9,求S30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.某職業(yè)學(xué)校要從6名男同學(xué),4名女同學(xué)中任選3人參加計(jì)算機(jī)動(dòng)漫創(chuàng)作比賽,其中女同學(xué)甲恰被選中的概率是0.3(結(jié)果用數(shù)值表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知某幾何體的三視圖如圖所示,則該幾何體的外接球的表面積為13π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在直角坐標(biāo)系xOy中,已知點(diǎn)A(1,1),B(2,3),C(3,2).
(1)若$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$=$\overrightarrow{0}$,求$\overrightarrow{OP}$的坐標(biāo).
(2)若$\overrightarrow{OP}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$(m,n∈R),且點(diǎn)P在函數(shù)y=x+1的圖象上,試求m-n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)y=f(x)是定義在(0,+∞)上的增函數(shù),對于任意的x>0,y>0,都有f(xy)=f(x)+f(y),且滿足f(2)=1.
(1)求$f(4),f(\frac{1}{2})$的值;
(2)求滿足f(2x)-f(x-3)>2的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在△ABC中,角A、B、C所對的邊長分別為a、b、c,已知a=3,b=4,∠C=$\frac{π}{3}$,則c=$\sqrt{13}$.

查看答案和解析>>

同步練習(xí)冊答案