【題目】某高中三年級(jí)有AB兩個(gè)班,各有50名同學(xué),這兩個(gè)班參加能力測(cè)試,成績(jī)統(tǒng)計(jì)結(jié)果如表:

AB班成績(jī)的頻數(shù)分布表

分組

[5060)

[60,70)

[70,80)

[8090)

[90,100]

A班頻數(shù)

4

8

23

9

6

B班頻數(shù)

7

12

13

10

8

1)試估計(jì)AB兩個(gè)班的平均分;

2)統(tǒng)計(jì)學(xué)中常用M值作為衡量總體水平的一種指標(biāo),已知M與分?jǐn)?shù)t的關(guān)系式為:M.

分別求這兩個(gè)班學(xué)生成績(jī)的M總值,并據(jù)此對(duì)這兩個(gè)班的總體水平作簡(jiǎn)單評(píng)價(jià).

【答案】(1)A=76B=75 (2)見(jiàn)解析

【解析】

1)取每組區(qū)間的中值作為該組的成績(jī),求出成績(jī)總和,即可得出結(jié)論;

2)分別統(tǒng)計(jì)出兩個(gè)班在[5060),[60,80) ,[80,100]的人數(shù),結(jié)合與分?jǐn)?shù)的關(guān)系,即可求解.

(1)估計(jì)A班平均分為:

(4×55+8×65+23×75+9×85+6×95)=76

B班平均分為:(7×55+12×65+13×75+10×85+8×95)=75.

(2)A班學(xué)生成績(jī)的M總值為: MA=2×4+2×(8+23)+4×(9+6)=114,

B班學(xué)生成績(jī)的M總值為: MB=2×7+2×(12+13)+4×(10+8)=108

MA>MB,∴A班總體水平好于B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于定義在上的函數(shù),有下述命題:①若是奇函數(shù),則的圖象關(guān)于點(diǎn)對(duì)稱(chēng);②函數(shù)的圖象關(guān)于直線(xiàn)對(duì)稱(chēng),則為偶函數(shù);③若對(duì),有,則2的一個(gè)周期;④函數(shù)的圖象關(guān)于直線(xiàn)對(duì)稱(chēng).其中正確的命題是______.(寫(xiě)出所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司生產(chǎn)的某批產(chǎn)品的銷(xiāo)售量萬(wàn)件(生產(chǎn)量與銷(xiāo)售量相等)與促銷(xiāo)費(fèi)用萬(wàn)元滿(mǎn)足(其中,為正常數(shù)).已知生產(chǎn)該產(chǎn)品還需投入成本萬(wàn)元(不含促銷(xiāo)費(fèi)用),產(chǎn)品的銷(xiāo)售價(jià)格定為件.

1)將該產(chǎn)品的利潤(rùn)萬(wàn)元表示為促銷(xiāo)費(fèi)用萬(wàn)元的函數(shù);

2)促銷(xiāo)費(fèi)用投入多少萬(wàn)元時(shí),該公司的利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電器專(zhuān)賣(mài)店銷(xiāo)售某種型號(hào)的空調(diào),記第天(,)的日銷(xiāo)售量為(單位;臺(tái)).函數(shù)圖象中的點(diǎn)分別在兩條直線(xiàn)上,如圖,該兩直線(xiàn)交點(diǎn)的橫坐標(biāo)為,已知時(shí),函數(shù)

1)當(dāng)時(shí),求函數(shù)的解析式;

2)求的值及該店前天此型號(hào)空調(diào)的銷(xiāo)售總量;

3)按照經(jīng)驗(yàn)判斷,當(dāng)該店此型號(hào)空調(diào)的銷(xiāo)售總量達(dá)到或超過(guò)臺(tái),且日銷(xiāo)售量仍持續(xù)增加時(shí),該型號(hào)空調(diào)開(kāi)始旺銷(xiāo),問(wèn)該店此型號(hào)空調(diào)銷(xiāo)售到第幾天時(shí),才可被認(rèn)為開(kāi)始旺銷(xiāo)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

(本題滿(mǎn)分15分)已知m1,直線(xiàn)

橢圓,分別為橢圓的左、右焦點(diǎn).

)當(dāng)直線(xiàn)過(guò)右焦點(diǎn)時(shí),求直線(xiàn)的方程;

)設(shè)直線(xiàn)與橢圓交于兩點(diǎn),,

的重心分別為.若原點(diǎn)在以線(xiàn)段

為直徑的圓內(nèi),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐PABC中,PA⊥底面ABCDAD∥BC,AB=AD=AC=3,PA=BC=4M為線(xiàn)段AD上一點(diǎn),AM=2MD,NPC的中點(diǎn).

)證明MN∥平面PAB;

)求直線(xiàn)AN與平面PMN所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列滿(mǎn)足:且對(duì)一切,均有

1)求證:數(shù)列為等差數(shù)列,并求數(shù)列的通項(xiàng)公式;

2)求數(shù)列的前項(xiàng)和;

3)設(shè),記數(shù)列的前項(xiàng)和為,求正整數(shù),使得對(duì)任意,均有

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等腰梯形中,,,ECD中點(diǎn),將沿AE折到的位置.

(1)證明:;

(2)當(dāng)折疊過(guò)程中所得四棱錐體積取最大值時(shí),求直線(xiàn)與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正項(xiàng)數(shù)列滿(mǎn)足:對(duì)任意正整數(shù),都有,,成等差數(shù)列,,成等比數(shù)列,且

)求證:數(shù)列是等差數(shù)列;

)求數(shù)列的通項(xiàng)公式;

)設(shè)=++…+,如果對(duì)任意的正整數(shù),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案