【題目】已知f(x)=2+log3x,x∈[1,9],g(x)=[f(x)]2+f(x2),
(1)求g(x)的定義域;
(2)求g(x)的最大值以及g(x)取最大值時x的值.
【答案】
(1)解:f(x)的定義域為[1,9],
要使函數(shù)g(x)=[f(x)]2+f(x2)有意義,必須滿足:
可知1≤x≤3,
則g(x)的定義域為[1,3]
(2)解:由f(x)的定義域為[1,9]可得g(x)的定義域為[1,3],
又g(x)=(2+log3x)2+(2+log3x2)=(log3x+3)2﹣3,
∵1≤x≤3,∴0≤log3x≤1.
∴當x=3時,g(x)有最大值13
【解析】(1)要使函數(shù)g(x)=[f(x)]2+f(x2)有意義,必須滿足 ,解不等式即可得到所求定義域;(2)根據(jù)f(x)的定義域為[1,9],先求出g(x)的定義域為[1,3],然后利用二次函數(shù)的最值再求函數(shù)g(x)=[f(x)]2+f(x2)=(2+log3x)2+(2+log3x2)=(log3x+3)2﹣3的最大值.
【考點精析】掌握函數(shù)的定義域及其求法和函數(shù)的最值及其幾何意義是解答本題的根本,需要知道求函數(shù)的定義域時,一般遵循以下原則:①是整式時,定義域是全體實數(shù);②是分式函數(shù)時,定義域是使分母不為零的一切實數(shù);③是偶次根式時,定義域是使被開方式為非負值時的實數(shù)的集合;④對數(shù)函數(shù)的真數(shù)大于零,當對數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時,底數(shù)須大于零且不等于1,零(負)指數(shù)冪的底數(shù)不能為零;利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(小)值;利用圖象求函數(shù)的最大(。┲担焕煤瘮(shù)單調(diào)性的判斷函數(shù)的最大(小)值.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C的焦點在x軸上,離心率等于 ,且過點(1, ). (Ⅰ)求橢圓C的標準方程;
(Ⅱ)過橢圓C的右焦點F作直線l交橢圓C于A,B兩點,交y軸于M點,若 =λ1 , =λ2 ,求證:λ1+λ2為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】雙流中學校運動會招募了12名男志愿者和18名女志愿者,將這30名志愿者的身高編成如圖所示的莖葉圖(單位: ),身高在175以上(包括175)定義為“高個子”,身高在175以 下(不包括175 )定義為“非高個子”.
(1)如果用分層抽樣的方法從“高個子”和“非高個子”中共抽取5人,再從這5人中選2人,求至少有一人是“高個子”的概率?
(2)若從身高180以上(包括180)的志愿者中選出男、女各一人,求這兩人身高相差5以上的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= +log2x.
(1)求f(2),f( ),f(4),f( )的值,并計算f(2)+f( ),f(4)+f( );
(2)求f(1)+f(2)+f(3)+…+f(2016)+f( )+f( )+…f( )的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若點( ,2)在冪函數(shù)f(x)的圖象上,點(2, )在冪函數(shù)g(x)的圖象上,定義h(x)= 求函數(shù)h(x)的最大值及單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)的定義域為[3,6],則函數(shù)y= 的定義域為( )
A.[ ,+∞)
B.[ ,2)
C.( ,+∞)
D.[ ,2)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分)
某學校用簡單隨機抽樣方法抽取了100名同學,對其日均課外閱讀時間(單位:分鐘)進行調(diào)查,結(jié)果如下:
t | ||||||
男同學人數(shù) | 7 | 11 | 15 | 12 | 2 | 1 |
女同學人數(shù) | 8 | 9 | 17 | 13 | 3 | 2 |
若將日均課外閱讀時間不低于60分鐘的學生稱為“讀書迷”.
(1)將頻率視為概率,估計該校4000名學生中“讀書迷”有多少人?
(2)從已抽取的8名“讀書迷”中隨機抽取4位同學參加讀書日宣傳活動.
(i)求抽取的4位同學中既有男同學又有女同學的概率;
(ii)記抽取的“讀書迷”中男生人數(shù)為,求的分布列和數(shù)學期望
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|2x﹣1|+|2x+a|,g(x)=x+3. (Ⅰ)當a=﹣2時,求不等式f(x)<g(x)的解集;
(Ⅱ)設a>﹣1,且當 時,f(x)≤g(x),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,設橢圓: 的離心率為, 分別為橢圓的左、右頂點, 為右焦點,直線與的交點到軸的距離為,過點作軸的垂線, 為上異于點的一點,以為直徑作圓.
(1)求的方程;
(2)若直線與的另一個交點為,證明:直線與圓相切.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com