【題目】選修4-4:坐標(biāo)系與參數(shù)方程

以平面直角坐標(biāo)系的原點為極點, 軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長度單位,直線的參數(shù)方程為為參數(shù)),圓的極坐標(biāo)方程為.

1求直線的普通方程與圓的直角坐標(biāo)方程;

2設(shè)曲線與直線交于兩點,若點的直角坐標(biāo)為,求的值.

【答案】1 2

【解析】試題分析:(1)根據(jù)加減消元法將直線的參數(shù)方程化為普通方程,根據(jù)將圓的極坐標(biāo)方程化為直角坐標(biāo)方程,(2)先化直線參數(shù)方程標(biāo)準(zhǔn)形式,代入圓的直角坐標(biāo)方程,根據(jù)參數(shù)幾何意義得,再根據(jù)韋達(dá)定理求值.

試題解析: 解:(1)直線的普通方程為,

,

所以

所以曲線的直角坐標(biāo)方程為.

2)點在直線上,且在圓內(nèi),由已知直線的參數(shù)方程是為參數(shù))

代入,

,設(shè)兩個實根為,則,即異號

所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為數(shù)列的前項和.任意正整數(shù),均有為遞增數(shù)列

A. 充分不必要條件 B. 必要不充分條件

C. 充要條件 D. 既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】德國數(shù)學(xué)家科拉茨年提出了一個著名的猜想:任給一個正整數(shù),如果是偶數(shù),就將它減半(即);如果是奇數(shù),則將它乘(即),不斷重復(fù)這樣的運算,經(jīng)過有限步后,一定可以得到.對于科拉茨猜想,目前誰也不能證明,也不能否定.現(xiàn)在請你研究:如果對正整數(shù)(首項)按照上述規(guī)則施行變換后的第項為(注:可以多次出現(xiàn)),則的所有不同值的個數(shù)為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為推行“新課堂”教學(xué)法,某老師分別用傳統(tǒng)教學(xué)和“新課堂”兩種不同的教學(xué)方式在甲、乙兩個平行班進(jìn)行教學(xué)實驗,為了解教學(xué)效果,期中考試后,分別從兩個班級中各隨機(jī)抽取20名學(xué)生的成績進(jìn)行統(tǒng)計,作出如圖所示的莖葉圖,若成績大于70分為“成績優(yōu)良”.

(1)由統(tǒng)計數(shù)據(jù)填寫下面2×2列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.05的前提下認(rèn)為“成績優(yōu)良與教學(xué)方式有關(guān)”?

甲班

乙班

總計

成績優(yōu)良

成績不優(yōu)良

總計

(2)從甲、乙兩班40個樣本中,成績在60分以下(不含60分)的學(xué)生中任意選取2人,求抽取的2人中恰有一人來自乙班的概率.

附:,(

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等比數(shù)列的各項為正數(shù),且.

(1)求的通項公式;

(2)設(shè),求證數(shù)列的前項和<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=,下列結(jié)論中錯誤的是

A. , f()=0

B. 函數(shù)y=f(x)的圖像是中心對稱圖形

C. f(x)的極小值點,則f(x)在區(qū)間(-∞,)單調(diào)遞減

D. fx)的極值點,則()=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代的數(shù)學(xué)名著,書中把三角形的田稱為“圭田”,把直角梯形的田稱為“邪田”,稱底是“廣”,稱高是“正從”,“步”是丈量土地的單位.現(xiàn)有一邪田,廣分別為十步和二十步,正從為十步,其內(nèi)有一塊廣為八步,正從為五步的圭田.若在邪田內(nèi)隨機(jī)種植一株茶樹,求該株茶樹恰好種在圭田內(nèi)的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,以原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為.

(1)求圓的直角坐標(biāo)方程;

(2)設(shè),直線的參數(shù)方程是為參數(shù)),已知與圓交于兩點,且,求的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】德國數(shù)學(xué)家科拉茨年提出了一個著名的猜想:任給一個正整數(shù),如果是偶數(shù),就將它減半(即);如果是奇數(shù),則將它乘(即),不斷重復(fù)這樣的運算,經(jīng)過有限步后,一定可以得到.對于科拉茨猜想,目前誰也不能證明,也不能否定.現(xiàn)在請你研究:如果對正整數(shù)(首項)按照上述規(guī)則施行變換后的第項為(注:可以多次出現(xiàn)),則的所有不同值的個數(shù)為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案