A. | $f({\frac{1}{3}})<f(2)<f({\frac{1}{2}})$ | B. | $f({\frac{1}{2}})<f(2)<f({\frac{1}{3}})$ | C. | $f({\frac{1}{2}})<f({\frac{1}{3}})<f(2)$ | D. | $f(2)<f({\frac{1}{3}})<f({\frac{1}{2}})$ |
分析 由f(1+x)=f(1-x),得函數(shù)f(x)關(guān)于x=1對稱,根據(jù)函數(shù)的單調(diào)性判斷函數(shù)的單調(diào)性,利用函數(shù)的單調(diào)性進(jìn)行比較即可.
解答 解:由f(1+x)=f(1-x),得函數(shù)f(x)關(guān)于x=1對稱,
當(dāng)x≥1時(shí),$f(x)={({\frac{1}{2}})^x}$,為減函數(shù),
則當(dāng)x≤1時(shí),函數(shù)f(x)為增函數(shù),
∵f(2)=f(1+1)=f(1-1)=f(0),
∴f(0)<f($\frac{1}{3}$)<f($\frac{1}{2}$),
即f(2)<f($\frac{1}{3}$)<f($\frac{1}{2}$),
故選:D.
點(diǎn)評 本題主要考查函數(shù)值的大小比較,根據(jù)條件判斷函數(shù)的對稱性,根據(jù)函數(shù)對稱性和單調(diào)性的關(guān)系進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,-6) | B. | (0,7) | C. | (0,-6)或(0,7) | D. | (-6,0)或(7,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{11}{2}$ | B. | 18 | C. | $\frac{23}{6}$ | D. | $\frac{9}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com