14.已知Sn為數(shù)列{an}的前n項(xiàng)和,且a1=1,a2=3,an+2=3an,則S2016=(  )
A.2×(31008-1)B.2×31008C.$\frac{{{3^{2016}}-1}}{2}$D.$\frac{{{3^{2016}}+1}}{2}$

分析 數(shù)列{an}滿足:a1=1,a2=3,an+2=3an,可得:數(shù)列{an}的奇數(shù)項(xiàng)與偶數(shù)項(xiàng)分別成等比數(shù)列,公比都為3,利用分組求和即可得出.

解答 解:∵數(shù)列{an}滿足:a1=1,a2=3,an+2=3an,
∴數(shù)列{an}的奇數(shù)項(xiàng)與偶數(shù)項(xiàng)分別成等比數(shù)列,公比都為3,
則S2016=(a1+a3+…+a2015)+(a2+a4+…+a2016
=$\frac{{3}^{1008}-1}{3-1}$+$\frac{3({3}^{1008}-1)}{3-1}$=2×(31008-1).
故選;A.

點(diǎn)評(píng) 本題考查了等比數(shù)列通項(xiàng)公式及其前n項(xiàng)和的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在ABC中,若cosA=$\frac{4}{5}$,C=120°,BC=2$\sqrt{3}$,則AB=( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在平面直角坐標(biāo)系xOy中,“雙曲線C的標(biāo)準(zhǔn)方程為$\frac{x^2}{16}$-$\frac{y^2}{9}$=1”是“雙曲線C的漸近線方程為y=±$\frac{3}{4}$x”成立的充分非必要條件.(填“充要”、“充分非必要”、“必要非充分”、“非充分非必要”中的一種)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-x,x≤0}\\{-{x}^{2}+2x,x>0}\end{array}\right.$,若方程f2(x)+bf(x)+$\frac{1}{4}$=0有六個(gè)相異實(shí)根,則實(shí)數(shù)b的取值范圍(  )
A.(-2,0)B.(-2,-1)C.(-$\frac{5}{4}$,0)D.(-$\frac{5}{4}$,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.拋物線C:y2=4x的準(zhǔn)線與x軸交于M,過焦點(diǎn)F作傾斜角為60°的直線與C交于A,B兩點(diǎn),則tan∠AMB=4$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.若$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是夾角為60°的兩個(gè)單位向量,$\overrightarrow{a}$=2$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,$\overrightarrow$=-3$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$
(1)求$\overrightarrow{a}$•$\overrightarrow$的值及|$\overrightarrow{a}$+$\overrightarrow$|;      
(2)設(shè)實(shí)數(shù)t滿足($\overrightarrow{a}$-t$\overrightarrow$)⊥$\overrightarrow{a}$,求t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知復(fù)數(shù)z=$\frac{(1-i)^{2}+3(1+i)}{2-i}$,若z2+b=1-i-az.
(Ⅰ)求z;
(Ⅱ)求實(shí)數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.對(duì)于定義在[0,+∞)上的函數(shù)f(x),若函數(shù)y=f(x)-(ax+b)滿足:①在區(qū)間[0,+∞)上單調(diào)遞減;②存在常數(shù)p,使其值域?yàn)椋?,p],則稱函數(shù)g(x)=ax+b為f(x)的“漸近函數(shù)”;
(I)證明:函數(shù) g(x)=x+1是函數(shù)f(x)=$\frac{{x}^{2}+2x+3}{x+1}$,x∈[0,+∞)的漸近函數(shù),并求此時(shí)實(shí)數(shù)p的值;
(Ⅱ)若函數(shù)f(x)=$\sqrt{{x}^{2}+1}$,x∈[0,+∞),g(x)=ax,證明:當(dāng)0<a<1時(shí),g(x)不是f(x)的漸近函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.2015年署期,某高校3名大學(xué)生計(jì)劃去學(xué)校指定的A、B、C、D4個(gè)單位做暑假工,每人選擇其中一個(gè)單位(可以去相同的單位),求選擇A單位的人數(shù)的分布列.

查看答案和解析>>

同步練習(xí)冊(cè)答案