【題目】已知圓O;x2+y2=4,F(xiàn)1(-1,0),F(xiàn)2(1,0),點(diǎn)D圓O上一動(dòng)點(diǎn),2=,點(diǎn)C在直線EF1上,且=0,記點(diǎn)C的軌跡為曲線W.

(1)求曲線W的方程;

(2)已知N(4,0),過點(diǎn)N作直線l與曲線W交于A,B不同兩點(diǎn),線段AB的中垂線為l',線段AB的中點(diǎn)為Q點(diǎn),記P與y軸的交點(diǎn)為M,求|MQ|的取值范圍.

【答案】(1); (2)[0,5).

【解析】

(1)由題,易知點(diǎn)D是的中點(diǎn),可得CE=CF2即CF1+CF2=4為定值,可得C的軌跡為以(-1,0),(1,0)為焦點(diǎn)的橢圓;

(2)由題,設(shè)直線l的方程,聯(lián)立橢圓,求得點(diǎn)N的坐標(biāo)(注意考慮判別式),再得出l'的直線方程,再求得點(diǎn)M的坐標(biāo),即可求得MQ的長度,求出其范圍即可.

(1)圓O:x2+y2=4,圓心為(0,0),半徑r=4,

F1(-1,0),F(xiàn)2(1,0),點(diǎn)D是圓O上一動(dòng)點(diǎn),

由2=,可得D為EF2的中點(diǎn),

點(diǎn)C在直線EF1上,且=0,可得CD⊥EF2,

連接CF2,可得CE=CF2,

且CF1+CF2=CF1+CE=EF1=2OD=4,

由橢圓的定義可得,C的軌跡為以(-1,0),(1,0)為焦點(diǎn)的橢圓,

可得c=1,a=2,b==,

則曲線W的方程為;

(2)由題意可知直線l的斜率存在,

設(shè)l:y=k(x-4),A(x1,y1),B(x2,y2),Q(x0,y0),

聯(lián)立直線與橢圓方程3x2+4y2=12,消去y得:

(3+4k2)x2-32k2x+64k2-12=0,

x1+x2=,x1x2=

又△=(-32k22-4(3+4k2)(64k2-12)>0,解得-<k<,

x0==,y0=k(x0-4)=-,

∴Q(,-),

∴l(xiāng)':y-y0=-(x-x0),即y+=-(x-),

化簡(jiǎn)得y=-x+,

令x=0,得m=,即M(0,),

|MQ|=(2+(2=256,

令t=3+4k2,則t∈[3,4),

∴|MQ|=256=16=16[-3(2-+1]=16[-3(2+].

∴|MQ|∈[0,5)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面中兩條直線相交于點(diǎn)O,對(duì)于平面上任意一點(diǎn)M,若x,y分別是M到直線的距離,則稱有序非負(fù)實(shí)數(shù)對(duì)(x,y)是點(diǎn)M的“距離坐標(biāo)”.已知常數(shù)p≥0,q≥0,給出下列三個(gè)命題:

①若p=q=0,則“距離坐標(biāo)”為(00)的點(diǎn)有且只有1個(gè);

②若pq=0,且p+q≠0,則“距離坐標(biāo)”為(p,q的點(diǎn)有且只有2個(gè);

③若pq≠0則“距離坐標(biāo)”為pq的點(diǎn)有且只有4個(gè).

上述命題中,正確命題的是______.(寫出所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率,且過焦點(diǎn)的最短弦長為3.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)分別是橢圓的左、右焦點(diǎn),過點(diǎn)的直線與曲線交于不同的兩點(diǎn)、,求的內(nèi)切圓半徑的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)不透明的箱子中裝有大小形狀相同的5個(gè)小球,其中2個(gè)白球標(biāo)號(hào)分別為,3個(gè)紅球標(biāo)號(hào)分別為,,,現(xiàn)從箱子中隨機(jī)地一次取出兩個(gè)球.

(1)求取出的兩個(gè)球都是白球的概率;

(2)求取出的兩個(gè)球至少有一個(gè)是白球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,.

(1)當(dāng)時(shí),判斷曲線與曲線的位置關(guān)系;

(2)當(dāng)曲線上有且只有一點(diǎn)到曲線的距離等于時(shí),求曲線上到曲線距離為的點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,設(shè).

(Ⅰ)若處取得極值,,求函數(shù)的單調(diào)區(qū)間

(Ⅱ)若時(shí)函數(shù)有兩個(gè)不同的零點(diǎn)、.

的取值范圍;②求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在區(qū)間上任取一個(gè)數(shù)記為a,在區(qū)間上任取一個(gè)數(shù)記為b

a,求直線的斜率為的概率;

a,,求直線的斜率為的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定點(diǎn),橫坐標(biāo)不小于的動(dòng)點(diǎn)在軸上的射影為,若.

(1)求動(dòng)點(diǎn)的軌跡的方程;

(2)若點(diǎn)不在直線上,并且直線與曲線相交于兩個(gè)不同點(diǎn).問是否存在常數(shù)使得當(dāng)的值變化時(shí),直線斜率之和是一個(gè)定值.若存在,求出的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為菱形,,為線段的中點(diǎn),為線段上的一點(diǎn).

(1)證明:平面平面.

(2)若,二面角的余弦值為,求與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案