10.已知△ABC中角A、B、C的對邊分別為a、b、c,滿足B=$\frac{2π}{3}$,c=a•cos(A+C),則tanA的值為$\frac{\sqrt{3}}{2}$.

分析 由題意易得a=2c,再由余弦定理可得b=$\sqrt{7}$c,進而可得cosA,由同角三角函數(shù)基本關(guān)系可得tanA

解答 解:由題意可得c=a•cos(A+C)=-acosB=$\frac{1}{2}$a,∴a=2c,
再由余弦定理可得b2=a2+c2-2accosB=4c2+c2-2×2c×c×(-$\frac{1}{2}$)=7c2,解得b=$\sqrt{7}$c,
∴cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{7{c}^{2}+{c}^{2}-4{c}^{2}}{2×\sqrt{7}c×c}$=$\frac{2}{\sqrt{7}}$,
∴sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{\sqrt{3}}{\sqrt{7}}$,
∴tanA=$\frac{sinA}{cosA}$=$\frac{\sqrt{3}}{2}$,
故答案為:$\frac{\sqrt{3}}{2}$.

點評 本題考查解三角形,涉及余弦定理和同角三角函數(shù)基本關(guān)系,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知點P(-2,-3)和以點Q為圓心的圓(x-4)2+(y-2)2=9.畫出以PQ為直徑,Q′為圓心的圓,再求出它的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知sinθ+cosθ=-$\frac{1}{5}$(-$\frac{π}{2}$<θ<0),求下列各式的值:tanθ+cotθ,sin2θ,sinθ-cosθ,cos4θ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.解答下列問題:
(1)已知tan(2π-α)=-2,求$\frac{1}{sinα+1}$-$\frac{1}{sinα-1}$的值.
(2)求$\frac{sin1110°•cos(-570°)•tan(-495°)}{cos420°•sin(-330°)}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.復(fù)數(shù)$\frac{{i}^{2}+{i}^{3}+{i}^{4}}{1-i}$=$\frac{1}{2}$-$\frac{1}{2}$i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知α是直線l的傾斜角,且sinα+cosα=$\frac{1}{5}$,則直線l的斜率為$-\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知角α的終邊經(jīng)過點(-$\frac{\sqrt{2}}{2}$,$\frac{1}{2}$),則tanα的值是( 。
A.$\frac{1}{2}$B.-$\frac{\sqrt{2}}{2}$C.-$\frac{\sqrt{3}}{2}$D.-$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在復(fù)平面內(nèi),復(fù)數(shù)z1=$\frac{2}{1+i}$,z2=$\frac{2}{1-i}$(i為虛數(shù)單位)對應(yīng)的點分別為A,B,則線段AB的長度為( 。
A.1B.2C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列對于函數(shù)f(x)=3+cos2x,x∈(0,3π)的判斷正確的是( 。
A.函數(shù)f(x)的周期為π
B.對于?a∈R,函數(shù)f(x+a)都不可能為偶函數(shù)
C.?x0∈(0,3π),使f(x0)=4
D.函數(shù)f(x)在區(qū)間$[\frac{π}{2},\frac{5π}{4}]$內(nèi)單調(diào)遞增

查看答案和解析>>

同步練習(xí)冊答案