20.已知a>0,函數(shù)f(x)=ax2-x,g(x)=lnx.
(1)若$a=\frac{1}{2}$,求函數(shù)y=f(x)-2g(x)的極值;
(2)設(shè)b>0,f'(x)是f(x)的導(dǎo)數(shù),g'(x)是g(x)的導(dǎo)數(shù),h(x)=f'(x)+bg'(x)+1,圖象的最低
點(diǎn)坐標(biāo)為(2,8),找出最大的實(shí)數(shù)m,滿足對(duì)于任意正實(shí)數(shù)x1,x2且x1+x2=1,h(x1)h(x2)≥m成立.

分析 (1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值即可;
(2)求出a,b的值,設(shè)u=h(x1)h(x2)=4x1x2+$\frac{64}{{{x}_{1}x}_{2}}$+16($\frac{{x}_{1}}{{x}_{2}}$+$\frac{{x}_{2}}{{x}_{1}}$),令t=x1x2,得到$t∈(0,\frac{1}{4}]$,則$u=4t+\frac{80}{t}-32$在$t∈(0,\frac{1}{4}]$上單調(diào)遞減,根據(jù)函數(shù)的單調(diào)性求出m的最大值即可.

解答 解:(1)當(dāng)a=$\frac{1}{2}$時(shí),f(x)-2g(x)=$\frac{1}{2}$x2-x-2lnx,
∴y′=f′(x)-2g′(x)=x-1-$\frac{2}{x}$=$\frac{(x-2)(x+1)}{x}$,x>0,
令y′>0,解得:x>2,令y′<0,解得:0<x<2,
故函數(shù)y=f(x)-2g(x)在(0,2)遞減,在(2,+∞)遞增,
∴y=f(x)-2g(x)在x=2處取得極小值f(2)-2g(2)=-2ln2,沒有極大值;
(2)由題意,得h(x)=2ax+$\frac{x}$,則h(x)=2ax+$\frac{x}$≥2$\sqrt{2ab}$,
當(dāng)且僅當(dāng)x=$\sqrt{\frac{2a}}$時(shí),等號(hào)成立,
∴$\left\{\begin{array}{l}{\sqrt{\frac{2a}}=2}\\{2\sqrt{2ab}=8}\end{array}\right.$,解得:$\left\{\begin{array}{l}{a=1}\\{b=8}\end{array}\right.$,
∴h(x)=2x+$\frac{8}{x}$,
h(x1)h(x2)≥m恒成立,
設(shè)u=h(x1)h(x2)=4x1x2+$\frac{64}{{{x}_{1}x}_{2}}$+16($\frac{{x}_{1}}{{x}_{2}}$+$\frac{{x}_{2}}{{x}_{1}}$)
=$4{x_1}{x_2}+\frac{64}{{{x_1}{x_2}}}+16•\frac{x_1^2+x_2^2}{{{x_1}{x_2}}}=4{x_1}{x_2}+\frac{64}{{{x_1}{x_2}}}+16•\frac{{{{({x_1}+{x_2})}^2}-2{x_1}{x_2}}}{{{x_1}{x_2}}}=4{x_1}{x_2}+\frac{80}{{{x_1}{x_2}}}-32$,
令t=x1x2,則$t={x_1}{x_2}≤{(\frac{{{x_1}+{x_2}}}{2})^2}=\frac{1}{4}$,
即$t∈(0,\frac{1}{4}]$,則$u=4t+\frac{80}{t}-32$在$t∈(0,\frac{1}{4}]$上單調(diào)遞減,
$u≥u(\frac{1}{4})=289$,
∴最大的實(shí)數(shù)數(shù)m=289.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、極值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,轉(zhuǎn)化思想,是一道綜合題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知點(diǎn)P(x,y)在不等式組$\left\{\begin{array}{l}{x-2≤0}\\{y-1≤0}\\{x+2y-2≥0}\end{array}\right.$表示的平面區(qū)域內(nèi)運(yùn)動(dòng),則z=x-y的最大值是( 。
A.-1B.-2C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知A,B分別是離心率為$\frac{\sqrt{3}}{2}$的橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的上頂點(diǎn)與右頂點(diǎn),右焦點(diǎn)F2到直線AB的距離為$\frac{2\sqrt{5}-\sqrt{15}}{5}$.
(1)求橢圓E的方程;
(2)過點(diǎn)M(0,2)作直線l交橢圓E于P,Q兩點(diǎn),求$\overrightarrow{OP}$•$\overrightarrow{OQ}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知復(fù)數(shù)ω是1的一個(gè)立方根,則1+ω+ω2+…+ω2017的所有可能值組合成的集合為{2018,$\frac{1}{2}+\frac{\sqrt{3}}{2}i$,$\frac{1}{2}-\frac{\sqrt{3}}{2}i$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若a,b是函數(shù)f(x)=x2-px+q(p>0,q>0)的兩個(gè)不同的零點(diǎn),c<0且a,b,c這三個(gè)數(shù)可適當(dāng)排序后成等差數(shù)列,也可適當(dāng)排序后成等比數(shù)列,則$\frac{p}{^{2}}$$+\frac{q}{a}$-2c的最小值等于( 。
A.9B.10C.3D.$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.如果執(zhí)行下面的程序框圖,那么輸出的S=20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知定義在R上的偶函數(shù)f(x)滿足:0≤x≤1時(shí),f(x)=-x3+3x,且f(x-1)=f(x+1),若方程f(x)=loga(|x|+1)+1(a>0,a≠1)恰好有12個(gè)實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是(  )
A.(5,6)B.(6,8)C.(7,8)D.(10,12)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若函數(shù)f(x)=x3+x2+mx+1是R上的單調(diào)增函數(shù),則實(shí)數(shù)m的取值范圍是$[\frac{1}{3},+∞)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.某校從高一年級(jí)學(xué)生中隨機(jī)抽取部分學(xué)生,將他們的模塊測試成績分為6組:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100)加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖,已知高一年級(jí)共有學(xué)生600名,據(jù)此估計(jì),該模塊測試成績不少于60分的學(xué)生人數(shù)為480.

查看答案和解析>>

同步練習(xí)冊(cè)答案