【題目】已知圓 ,直線 .

(1)求直線 所過(guò)定點(diǎn) 的坐標(biāo);
(2)求直線 被圓 所截得的弦長(zhǎng)最短時(shí) 的值及最短弦長(zhǎng).
(3)已知點(diǎn) ,在直線 上( 為圓心),存在定點(diǎn) (異于點(diǎn) ),滿足:對(duì)于圓 上任一點(diǎn) ,都有 為一常數(shù),試求所有滿足條件的點(diǎn) 的坐標(biāo)及該常數(shù).

【答案】
(1)解:依題意得, ,
,且 ,得 , ,∴直線 過(guò)定點(diǎn)
(2)解:當(dāng) 時(shí),所截得弦長(zhǎng)最短,由題知 .
,得 ,∴由 .
∴圓心到直線的距離為 .
∴最短弦長(zhǎng)為
(3)解:法一:由題知,直線 的方程為 ,假設(shè)存在定點(diǎn) 滿足題意,
則設(shè) , ,得 ,且 ,

,
整理得: ,
∵上式對(duì)任意 恒成立,
,
解得 , , (舍去,與 重合),
綜上可知,在直線 上存在定點(diǎn) ,使得 為常數(shù) .
法二:設(shè)直線 上的點(diǎn) .
取直線 與圓 的交點(diǎn) ,則
取直線 與圓 的交點(diǎn) ,則 ,
,解得 (舍去,與 重合),此時(shí)
若存在這樣的定點(diǎn) 滿足題意,則必為 .
下證:點(diǎn) 滿足題意,
設(shè)圓上任意一點(diǎn) ,則 ,
.
綜上可知,在直線 上存在定點(diǎn) ,使得 為常數(shù)
【解析】(1)求含字母系數(shù)的直線方程所過(guò)的定點(diǎn)將方程轉(zhuǎn)化為該字母的等式,求得使等式恒成立時(shí)x,y的值即可;(2)利用點(diǎn)到直線垂線段最短的基本思路來(lái)解題;(3)先設(shè)出滿足條件的點(diǎn) N 的坐標(biāo)及該常數(shù),經(jīng)過(guò)變形后成為求解x在閉區(qū)間上使得等式恒成立的條件.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}中,a1=1,an+1= (n∈N*).
(1)求證:{ + }為等比數(shù)列,并求{an}的通項(xiàng)公式an;
(2)數(shù)列{bn}滿足bn=(3n﹣1) an , 求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= [cos(2x+ )+4sinxcosx]+1,x∈R.
(1)求函數(shù)f(x)的最小正周期;
(2)令g(x)=af(x)+b,若函數(shù)g(x)在區(qū)間[﹣ , ]上的值域?yàn)閇﹣1.1],求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給定 ,設(shè)函數(shù) 滿足:對(duì)于任意大于 的正整數(shù) ,
(1)設(shè) ,則其中一個(gè)函數(shù) 處的函數(shù)值為;
(2)設(shè) ,且當(dāng) 時(shí), ,則不同的函數(shù) 的個(gè)數(shù)為。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=sinx,x∈(0,2π),點(diǎn)P(x,y)是函數(shù)f(x)圖象上任一點(diǎn),其中0(0,0),A(2π,0),記△OAP的面積為g(x),則g′(x)的圖象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=lnx,g(x)=f(x)+ax2﹣3x,函數(shù)g(x)的圖象在點(diǎn)(1,g(x))處的切線平行于x軸.
(1)求a的值;
(2)求函數(shù)g(x)的極小值;
(3)設(shè)斜率為k的直線與函數(shù)f(x)的圖象交于兩點(diǎn)A(x1 , y1),B(x2 , y2),(x1<x2),證明: <k<

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓 ,直線

(1)求證:對(duì)任意的 ,直線 與圓 恒有兩個(gè)交點(diǎn);
(2)求直線 被圓 截得的線段的最短長(zhǎng)度,及此時(shí)直線 的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】由數(shù)字0,1,2,3組成沒(méi)有重復(fù)數(shù)字的四位數(shù)有個(gè)(用數(shù)字作答)其中數(shù)字0,1相鄰的四位數(shù)有個(gè)(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】盒中有標(biāo)號(hào)分別為0,1,2,3的球各一個(gè),這些球除標(biāo)號(hào)外均相同.從盒中依次摸取兩個(gè)球(每次一球,摸出后不放回),記為一次游戲.規(guī)定:摸出的兩個(gè)球上的標(biāo)號(hào)之和等于5為一等獎(jiǎng),等于4為二等獎(jiǎng),等于其它為三等獎(jiǎng).
(1)求完成一次游戲獲三等獎(jiǎng)的概率;
(2)記完成一次游戲獲獎(jiǎng)的等級(jí)為ξ,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案