4.將直線y=2x繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)$\frac{π}{4}$,則所得直線的斜率為-3.

分析 設(shè)直線y=2x的傾斜角是α,所得直線的斜率k=tan(α+$\frac{π}{4}$),展開(kāi)計(jì)算即可.

解答 解:設(shè)直線y=2x的傾斜角是α,則tanα=2,
將直線y=2x繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)$\frac{π}{4}$,
則傾斜角變?yōu)椋害?$\frac{π}{4}$,
∴所得直線的斜率k=tan(α+$\frac{π}{4}$)=$\frac{2+1}{1-2×1}$=-3,
故答案為:-3.

點(diǎn)評(píng) 本題考察了直線的斜率問(wèn)題,考察兩角和的正切公式,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知點(diǎn)A(0,-1),B(3,0),C(1,2),平面區(qū)域P是由所有滿足$\overrightarrow{AM}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$(2<λ≤m,2<μ≤n)的點(diǎn)M組成的區(qū)域,若區(qū)域P的面積為6,則m+n的最小值為4+$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow$|=4,$\overrightarrow{a}$在$\overrightarrow$方向上的投影是$\frac{1}{2}$,則$\overrightarrow{a}$•$\overrightarrow$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知復(fù)數(shù)z(1+i)=2i,則復(fù)數(shù)z=( 。
A.1+iB.1-iC.$\frac{1}{2}$+$\frac{1}{2}$iD.$\frac{1}{2}$-$\frac{1}{2}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.函數(shù)f(x)=2sin(3x+$\frac{π}{6}$),(x∈[-$\frac{7π}{18}$,$\frac{5π}{18}$])的圖象與直線y=1交于P、Q兩點(diǎn),則|$\overrightarrow{PQ}$|=$\frac{2π}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.在復(fù)平面內(nèi),復(fù)數(shù)z=$\frac{2-i}{i}$的共軛復(fù)數(shù)$\overline{z}$對(duì)應(yīng)的點(diǎn)所在的象限( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,Sn=2an+1,則當(dāng)n>1時(shí),Sn=( 。
A.($\frac{3}{2}$)n-1B.2n-1C.($\frac{2}{3}$)n-1D.$\frac{1}{3}$($\frac{1}{{2}^{n-1}}$-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.某單位有員工90人,其中女員工有36人,為做某項(xiàng)調(diào)查,擬采用分層抽樣抽取容量為15的樣本,則男員工應(yīng)選取的人數(shù)是9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.設(shè)函數(shù)f(x)=$\frac{x+2}{x-1}$,直線y=a(a∈R)與y=f(x)的圖象無(wú)公共點(diǎn),則滿足不等式f(|t|+$\frac{3}{2}$)<2a+f(4a)的實(shí)數(shù)t的取值范圍是(-∞,$-\frac{1}{2}$)∪($\frac{1}{2}$,+∞).

查看答案和解析>>

同步練習(xí)冊(cè)答案