16.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,Sn=2an+1,則當(dāng)n>1時(shí),Sn=( 。
A.($\frac{3}{2}$)n-1B.2n-1C.($\frac{2}{3}$)n-1D.$\frac{1}{3}$($\frac{1}{{2}^{n-1}}$-1)

分析 利用遞推關(guān)系與等比數(shù)列的通項(xiàng)公式即可得出.

解答 解:∵Sn=2an+1,得Sn=2(Sn+1-Sn),即3Sn=2Sn+1
由a1=1,所以Sn≠0.則$\frac{{S}_{n+1}}{{S}_{n}}$=$\frac{3}{2}$.
∴數(shù)列{Sn}為以1為首項(xiàng),公比為$\frac{3}{2}$的等比數(shù)列
∴Sn=$(\frac{3}{2})^{n-1}$.
故選:A.

點(diǎn)評 本題考查了遞推關(guān)系與等比數(shù)列的通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知等差數(shù)列{an}的首項(xiàng)a2=5,前4項(xiàng)和S4=28.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=(-1)nan,求數(shù)列{bn}的前2n項(xiàng)和T2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.微信是騰訊公司推出的一種手機(jī)通訊軟件,它支持發(fā)送語音短信、視頻、圖片和文字,一經(jīng)推出便風(fēng)靡全國,甚至涌現(xiàn)出一批在微信的朋友圈內(nèi)銷售商品的人(被稱為微商).為了調(diào)查每天微信用戶使用微信的時(shí)間,某經(jīng)銷化妝品的微商在一廣場隨機(jī)采訪男性、女性用戶各50名,將男性、女性使用微信的時(shí)間分成5組:(0,2],(2,4],(4,6],(6,8],(8,10]分別加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.

(Ⅰ)根據(jù)女性頻率直方圖估計(jì)女性使用微信的平均時(shí)間;
(Ⅱ)若每天玩微信超過4小時(shí)的用戶列為“微信控”,否則稱其為“非微信控”,
請你根據(jù)已知條件完成2×2的列聯(lián)表,并判斷是否有90%的把握認(rèn)為“微信控”與“性別”有關(guān)?
微信控非微信控合計(jì)
男性50
女性50
合計(jì)100
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
參考數(shù)據(jù):
P(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.將直線y=2x繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)$\frac{π}{4}$,則所得直線的斜率為-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.寒假里5名同學(xué)結(jié)伴乘動車外出旅游,實(shí)名制購票,每人一座,恰在同一排A,B,C,D,E五個(gè)座位
(一排共五個(gè)座位),上車后五人在這五個(gè)座位上隨意坐,則恰有一人坐對與自己車票相符座位的坐法有45種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)f(x)是定義在R上的奇函數(shù),且f(x)=2x+$\frac{m}{{2}^{x}}$,設(shè)g(x)=$\left\{\begin{array}{l}{f(x),x>1}\\{f(-x),x≤1}\end{array}\right.$.若函數(shù)y=g(x)-t有且只有一個(gè)零點(diǎn),則實(shí)數(shù)t的取值范圍是[-$\frac{3}{2}$,$\frac{3}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在△ABC中,角A,B,C的對邊分別為a,b,c已知sinA+sinC=2sin(A+C)
(Ⅰ)求證:a,b,c成等差數(shù)列;
(Ⅱ)若b=1,B=$\frac{π}{3}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若sinα=2cosα,則$\frac{sinα-cosα}{sinα+cosα}$的值為( 。
A.1B.-$\frac{1}{3}$C.$\frac{1}{3}$D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知三棱錐O-ABC,OA,OB,OC兩兩垂直,且OA=OB=$\sqrt{2}$,OC=1,P是△ABC上任意一點(diǎn),設(shè)OP與平面ABC所成角為x,OP=y,則y關(guān)于x的函數(shù)關(guān)系圖象為( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案