【題目】設(shè)函數(shù)的定義域為,如果存在正實數(shù),使得對任意,都有,且恒成立,則稱函數(shù)上的“的型增函數(shù)”,已知是定義在上的奇函數(shù),且在時, ,若上的“2017的型增函數(shù)”,則實數(shù)的取值范圍是__________

【答案】

【解析】f(x)是定義在R上的奇函數(shù),且當x>0,f(x)=|xa|2a,

f(x)R上的“2017型增函數(shù)”,

(1)x>0時,由定義有|x+2017a|2a>|xa|2a,

|x+2017a|>|xa|,其幾何意義為到點a小于到點a2017的距離,

由于x>0,故可知a+a2017<0

x<0時,

①若x+2017<0,則有|x+2017+a|+2a>|x+a|+2a

|x+a|>|x+2017+a|,其幾何意義表示到點a的距離小于到點a2017的距離,

由于x<0,故可得aa2017>0,;

②若x+2017>0,則有|x+2017a|2a>|x+a|+2a,

|x+a|+|x+2017a|>4a,其幾何意義表示到到點a的距離與到點a2017的距離的和大于4a,

(2)a0時,顯然成立,當a>0時,由于|x+a|+|x+2017+a||aa+2017|=|2a2017|,

故有|2a2017|>4a,必有20172a>4a,解得,

綜上,xR都成立的實數(shù)a的取值范圍是,即 .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)有甲、乙兩套設(shè)備生產(chǎn)同一種產(chǎn)品,為了檢測兩套設(shè)備的生產(chǎn)質(zhì)量情況,隨機從兩套設(shè)備生產(chǎn)的大量產(chǎn)品中各抽取了50件產(chǎn)品作為樣本,檢測一項質(zhì)量指標值,若該項質(zhì)量指標值落在內(nèi),則為合格品,否則為不合格品. 表1是甲套設(shè)備的樣本的頻數(shù)分布表,圖1是乙套設(shè)備的樣本的頻率分布直方圖.

表1:甲套設(shè)備的樣本的頻數(shù)分布表

質(zhì)量指標值

[95,100)

[100,105)

[105,110)

[110,115)

[115,120)

[120,125]

頻數(shù)

1

5

18

19

6

1

圖1:乙套設(shè)備的樣本的頻率分布直方圖

(Ⅰ)將頻率視為概率. 若乙套設(shè)備生產(chǎn)了5000件產(chǎn)品,則其中的不合格品約有多少件;

(Ⅱ)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有90%的把握認為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標值與甲、乙兩套設(shè)備的選擇有關(guān);

甲套設(shè)備

乙套設(shè)備

合計

合格品

不合格品

合計

(Ⅲ)根據(jù)表1和圖1,對兩套設(shè)備的優(yōu)劣進行比較.

附:

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=2x,gx)=x2ax(其中aR.對于不相等的實數(shù)x1x2,設(shè)mn,現(xiàn)有如下命題:

對于任意不相等的實數(shù)x1x2,都有m0;

對于任意的a及任意不相等的實數(shù)x1,x2,都有n0;

對于任意的a,存在不相等的實數(shù)x1,x2,使得mn;

對于任意的a,存在不相等的實數(shù)x1,x2,使得m=-n.

其中真命題有___________________(寫出所有真命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如下圖,已知點是離心率為的橢圓 上的一點,斜率為的直線交橢圓、兩點,且、、三點互不重合.

1)求橢圓的方程;

2)求證:直線, 的斜率之和為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著資本市場的強勢進入,互聯(lián)網(wǎng)共享單車“忽如一夜春風(fēng)來”,遍布了一二線城市的大街小巷.為了解共享單車在市的使用情況,某調(diào)查機構(gòu)借助網(wǎng)絡(luò)進行了問卷調(diào)查,并從參與調(diào)查的網(wǎng)友中抽取了200人進行抽樣分析,得到表格:(單位:人)

經(jīng)常使用

偶爾或不用

合計

30歲及以下

70

30

100

30歲以上

60

40

100

合計

130

70

200

(1)根據(jù)以上數(shù)據(jù),能否在犯錯誤的概率不超過0.15的前提下認為市使用共享單車情況與年齡有關(guān)?

(2)現(xiàn)從所抽取的30歲以上的網(wǎng)友中利用分層抽樣的方法再抽取5人.

(i)分別求這5人中經(jīng)常使用、偶爾或不用共享單車的人數(shù);

(ii)從這5人中,再隨機選出2人贈送一件禮品,求選出的2人中至少有1人經(jīng)常使用共享單車的概率.

參考公式: ,其中.

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2張邊長均為1分米的正方形紙片分別按甲、乙兩種方式剪裁并廢棄陰影部分

1)在圖甲的方式下,剩余部分恰能完全覆蓋某圓錐的表面,求該圓錐的母線長及底面

半徑;

2)在圖乙的方式下,剩余部分能完全覆蓋一個長方體的表面,求長方體體積的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象與軸相切,且切點在軸的正半軸上.

(1)若函數(shù)上的極小值不大于,求的取值范圍.

(2)設(shè),證明: 上的最小值為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)x(1)R上的偶函數(shù).

(1)對任意的x[1,2],不等式m·2x1恒成立,求實數(shù)m的取值范圍.

(2)g(x)1,設(shè)函數(shù)F(x)g(4xn)g(2x13)有零點求實數(shù)n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系中,以坐標原點為極點, 軸的正半軸為極軸,建立極坐標系,已知直線的參數(shù)方程為 (為參數(shù)),曲線的極坐標方程是.

(1)寫出直線的普通方程和曲線的直角坐標方程;

(2)設(shè)直線與曲線相交于兩點,點的中點,點的極坐標為,求的值.

查看答案和解析>>

同步練習(xí)冊答案