【題目】已知集合,其中, 表示中所有不同值的個數(shù).

)設集合, ,分別求

)若集合,求證:

是否存在最小值?若存在,求出這個最小值;若不存在,請說明理由.

【答案】(1), ;(2)見解析;(3).

【解析】試題分析:1)直接利用定義把集合P=2,4,68,Q=24,816中的值代入即可求出lP)和lQ);
2)先由ai+aj1≤ij≤n)最多有個值,可得,;再利用定義推得所有ai+aj(1≤i<j≤n)的值兩兩不同,即可證明結論.
(Ⅲ)l(A)存在最小值,設,所以.由此即可證明l(A)的最小值2n-3.

試題解析:

)由, , , ,

, , , ,

)證明:∵最多有個值,

,

又集合,任取, ,

時,不妨設,則,

,

時, ,

∴當且僅當 時,

即所有的值兩兩不同,

存在最小值,且最小值為,

不妨設,可得,

中至少有個不同的數(shù),即

,則,即的不同值共有

的最小值為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖在直角坐標系中,的圓心角為,所在圓的半徑為1,角θ的終邊與交于點C.


1)當C的中點時,D為線段OA上任一點,求的最小值;

2)當C上運動時,DE分別為線段OA,OB的中點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左右焦點分別為,上頂點為,若直線的斜率為1,且與橢圓的另一個交點為, 的周長為.

(1)求橢圓的標準方程;

(2)過點的直線(直線的斜率不為1)與橢圓交于兩點,點在點的上方,若,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,平面平面,,,,的中點.

)求證:

)求證:平面平面

)在平面內(nèi)是否存在,使得直線平面,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),函數(shù)的圖像在處的切線方程為:

(1)求的值;

(2)若,成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有以下說法:

一年按365天計算,兩名學生的生日相同的概率是;買彩票中獎的概率為0.001,那么買1 000張彩票就一定能中獎;乒乓球賽前,決定誰先發(fā)球,抽簽方法是從1~1010個數(shù)字中各抽取1,再比較大小,這種抽簽方法是公平的;昨天沒有下雨,則說明昨天氣象局的天氣預報降水概率是90%”是錯誤的.

根據(jù)我們所學的概率知識,其中說法正確的序號是___.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】20名學生某次數(shù)學考試成績(單位:分)的頻率分布直方圖如下:

(1)求頻率直方圖中a的值;

(2)分別求出成績落在[50,60)與[60,70)中的學生人數(shù);

(3)從成績在[50,70)的學生中人選2人,求這2人的成績都在[60,70)中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線 的兩條漸近線與拋物線的準線分別交于,兩點.若雙曲線的離心率為,的面積為為坐標原點,則拋物線的焦點坐標為 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為偶函數(shù),且函數(shù)的圖象的兩相鄰對稱軸間的距離為.

1)求的值;

2)將函數(shù)的圖象向右平移個單位長度后,再將得到的圖象上各點的橫坐標伸長為原來的4倍,縱坐標不變,得到函數(shù)的圖象,求函數(shù)的單調(diào)遞減區(qū)間.

查看答案和解析>>

同步練習冊答案