已知點在函數(shù)圖象上,過點的切線的方向向量為>0).
(Ⅰ)求數(shù)列的通項公式,并將化簡;
(Ⅱ)設(shè)數(shù)列的前n項和為Sn,若≤Sn對任意正整數(shù)n均成立,求實數(shù)的范圍.

(Ⅰ) ;
(Ⅱ) .

解析試題分析:(Ⅰ)                2分
  ∵>0 ∴        4分
        7分
(Ⅱ)由(Ⅰ)知              8分

             10分
易知是遞增的  ∴當(dāng)時,的最小值為  ∴      12分
考點:直線方程的概念,導(dǎo)數(shù)的幾何意義及導(dǎo)數(shù)計算,裂項相消法,不等式證明。
點評:中檔題,本題綜合性較強,將函數(shù)、導(dǎo)數(shù)、數(shù)列及數(shù)列的求和結(jié)合在一起進行考查!胺纸M求和法”“裂項相消法”“錯位相減法”等,是常常考查的數(shù)列求和方法。涉及數(shù)列不等式的證明問題,往往先求和、后放縮、再證明。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

若正數(shù)項數(shù)列的前項和為,首項,點在曲線上.
(1)求;
(2)求數(shù)列的通項公式;
(3)設(shè),表示數(shù)列的前項和,若恒成立,求及實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列的前項和為,對任意的,都有,且;數(shù)列滿足.
(Ⅰ)求的值及數(shù)列的通項公式;
(Ⅱ)求證:對一切成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列中,,n≥2時,求通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列{an}的前n項和為Sn=2n2,{bn}為等比數(shù)列,且a1=b1,b1(a2-a1)=b2.
(1)求數(shù)列{an}和{bn}的通項公式;
(2)設(shè)cnan bn,求數(shù)列{cn}的前n項和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),數(shù)列滿足
(1)求;
(2)猜想數(shù)列的通項公式,并用數(shù)學(xué)歸納法予以證明。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的前項和為,且對任意的都有 ,
(Ⅰ)求數(shù)列的前三項
(Ⅱ)猜想數(shù)列的通項公式,并用數(shù)學(xué)歸納法證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列滿足:
(1)若,求數(shù)列的通項公式;
(2)若,且
① 記,求證:數(shù)列為等差數(shù)列;
② 若數(shù)列中任意一項的值均未在該數(shù)列中重復(fù)出現(xiàn)無數(shù)次,求首項應(yīng)滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在數(shù)列中,
(Ⅰ)求數(shù)列的前項和;
(Ⅱ)若存在,使得成立,求實數(shù)的最小值.

查看答案和解析>>

同步練習(xí)冊答案