分析 根據(jù)數(shù)列的遞推關(guān)系,結(jié)合等比數(shù)列的定義進(jìn)行證明即可.
解答 解:∵an=$\frac{8}{6-{a}_{n-1}}$,
∴(6-an-1)an=8,
即6an-an-1an=8,
則an-1an=6an-8,
則當(dāng)n≥2時(shí),$\frac{\frac{{a}_{n}-2}{{a}_{n}-4}}{\frac{{a}_{n-1}-2}{{a}_{n-1}-4}}$=$\frac{{a}_{n}-2}{{a}_{n}-4}$$•\frac{{a}_{n-1}-4}{{a}_{n-1}-2}$=$\frac{{a}_{n}{a}_{n-1}-2{a}_{n-1}-4{a}_{n}+8}{{a}_{n}{a}_{n-1}-4{a}_{n-1}-2{a}_{n}+8}$
=$\frac{6{a}_{n}-8-2{a}_{n-1}-4{a}_{n}+8}{6{a}_{n}-8-4{a}_{n-1}-2{a}_{n}+8}$=$\frac{2({a}_{n}-{a}_{n-1})}{4({a}_{n}-{a}_{n-1})}$=$\frac{1}{2}$為常數(shù),
故:{$\frac{{a}_{n}-2}{{a}_{n}-4}$}為公比q=$\frac{1}{2}$的等比數(shù)列.
點(diǎn)評 本題主要考查等比數(shù)列的判定,根據(jù)數(shù)列的遞推關(guān)系以及等比數(shù)列的定義是解決本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | -2 | C. | 2i | D. | -2i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com