分析 (Ⅰ)先切化弦,再由同角三角函數(shù)關(guān)系式,倍角公式及誘導(dǎo)公式即可化簡求值.
(Ⅱ)由題意得tanα的值,利用倍角公式,同角三角函數(shù)關(guān)系式化簡后代人即可求值.
解答 (本題滿分12分)
解:(Ⅰ)原式=$\frac{{\frac{{sin(\frac{π}{4}+α)}}{{cos(\frac{π}{4}+α)}}•cos2α}}{{2{{sin}^2}(\frac{π}{4}+α)}}$=$\frac{cos2α}{{2sin(\frac{π}{4}+α)cos(\frac{π}{4}+α)}}$…(2分)
=$\frac{cos2α}{{sin(\frac{π}{2}+2α)}}$…(4分)
=$\frac{cos2α}{cos2α}=1$.…(6分)
(Ⅱ)由題意得sinθ=-2cosθ,∴tanθ=$\frac{sinθ}{cosθ}$=-2.…(7分)
∴$\frac{1+sin2θ-cos2θ}{1+sin2θ+cos2θ}=\frac{{{{sin}^2}θ+{{cos}^2}θ+2sinθcosθ-({{cos}^2}θ-{{sin}^2}θ)}}{{{{sin}^2}θ+{{cos}^2}θ+2sinθcosθ+({{cos}^2}θ-{{sin}^2}θ)}}$…(9分)
=$\frac{{2{{sin}^2}θ+2sinθcosθ}}{{2{{cos}^2}θ+2sinθcosθ}}$=$\frac{{{{tan}^2}θ+tanθ}}{1+tanθ}$…(11分)
=tanθ=-2.…(12分)
(改編自必修4第143頁第三章習(xí)題3.2第1題第(8)小題)
點評 本題主要考查了同角三角函數(shù)關(guān)系式,倍角公式及誘導(dǎo)公式的應(yīng)用,技巧性較強,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com