6.隨機變量ξ服從正態(tài)分布N(2,σ2),P(ξ≤4)=0.84,則P(ξ<0)=( 。
A.0.16B.0.32C.0.68D.0.84

分析 根據(jù)隨機變量X服從正態(tài)分布N(2,σ2),看出這組數(shù)據(jù)對應(yīng)的正態(tài)曲線的對稱軸μ=2,根據(jù)正態(tài)曲線的特點,即可得到結(jié)果.

解答 解:∵隨機變量X服從正態(tài)分布N(2,σ2),
∴μ=2,
∵P(ξ≤4)=0.84,
∴P(ξ≥4)=1-0.84=0.16,
∴P(ξ≤0)=P(ξ≥4)=1-P(ξ≤4)=0.16,
故選:A.

點評 本題考查正態(tài)分布以及正態(tài)曲線的特點,若一個隨機變量如果是眾多的、互不相干的、不分主次的偶然因素作用結(jié)果之和,它就服從或近似的服從正態(tài)分布.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在直角坐標(biāo)系xOy中,以原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C1的極坐標(biāo)方程為ρ2=$\frac{3}{1+2co{s}^{2}θ}$,直線l的極坐標(biāo)方程為ρ=$\frac{4}{sinθ+cosθ}$.
(1)寫出曲線C1與直線l的直角坐標(biāo)方程;
(2)設(shè)Q為曲線C1上一動點,求Q點到直線l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某產(chǎn)品單價是120元,可銷售80萬件,市場調(diào)查后發(fā)現(xiàn)規(guī)律為降價x元后可多銷售2x萬件,寫出銷售金額y(萬元)與x的函數(shù)關(guān)系式,并求當(dāng)降價多少元時,銷售金額最大?最大是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)y=$\frac{\sqrt{4-{2}^{x}}}{x}$的定義域為{x|x≤2且x≠0}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知等差數(shù)列{an}中,a4+a7=42,則前10項和S10=( 。
A.420B.380C.210D.140

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若i是虛數(shù)單位,Z的共軛復(fù)數(shù)$\overline{Z}$,復(fù)數(shù)z=$\frac{-1+3i}{1+2i}$,則$\overline Z$在復(fù)平面對應(yīng)的點為( 。
A.(5,5)B.(5,-5)C.(1,1)D.(1,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若tanα=3,tanβ=5,則tan(α-β)的值為$-\frac{1}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=cosα}\\{y=1+sinα}\end{array}\right.$(α為參數(shù)),以原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρsinθ=1,則直線l與圓在一象限交點的直角坐標(biāo)為(1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某校從高一年級學(xué)生中隨機抽取40名學(xué)生作為樣本,將他們的期中考試數(shù)學(xué)成績(滿分100分,成績均為不低于40分的整數(shù))分成六段:[40,50),[50,60),[90,100)后得到如圖的頻率分布直方圖.
(Ⅰ)求圖中實數(shù)a的值;
(Ⅱ)根據(jù)頻率分布直方圖,試估計該校高一年級學(xué)生其中考試數(shù)學(xué)成績的平均數(shù);
(Ⅲ)若從樣本中數(shù)學(xué)成績在[40,50)與[90,100]兩個分?jǐn)?shù)段內(nèi)的學(xué)生中隨機選取2名學(xué)生,試用列舉法求這兩名學(xué)生的數(shù)學(xué)成績之差的絕對值不大于10的概率.

查看答案和解析>>

同步練習(xí)冊答案