11.有4張分別標有數(shù)字1,2,3,4的紅色卡片和4張分別標有數(shù)字1,2,3,4的藍色卡片,從這8張卡片中取出4張卡片排成一行.如果取出的4張卡片所標數(shù)字之和等于10,則不同的排法共有( 。┓N.
A.432B.384C.308D.288

分析 根據(jù)題意,分析可得,數(shù)字之和為10的情況有①4,4,1,1;②4,3,2,1;③3,3,2,2;再依次利用排列組合公式求得每種情況下的排法數(shù)目,進而由分類計數(shù)原理,將其相加即可得答案.

解答 解:根據(jù)題意,所取出的數(shù)字之和為10,共有三種情況:①4,4,1,1;②4,3,2,1;③3,3,2,2;
則分3種情況討論:
①取出的卡片數(shù)字為4,4,1,1時;有A44種取法;
②取出的卡片數(shù)字為3,3,2,2時;有A44種取法;
③取出的卡片數(shù)字為4,3,2,1時;每個數(shù)字都有兩種不同的取法,則有24×A44種取法,
則一共有A44+A44+24×A44=432種;
故選:A.

點評 本題考查排列、組合的應(yīng)用,解題時需要分析所取出的數(shù)字來自一種卡片還是兩種卡片.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

1.函數(shù)$y=\sqrt{-{x^2}-2x+8}$的定義域為A,值域為B,則A∪B=[-4,3].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知集合M={x|x<0,x∈R},N={x|x2+x-2=0,x∈R},則M∩N=(  )
A.ϕB.{-2}C.{1}D.{-2,1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知cos(α+$\frac{π}{4}$)=$\frac{7\sqrt{2}}{10}$,cos2α=$\frac{7}{25}$,則sinα+cosα等于( 。
A.$\frac{3}{5}$B.-$\frac{3}{5}$C.-$\frac{1}{5}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的上頂點到右頂點的距離為2,左焦點為F(-$\sqrt{2}$,0),過點D(0,3)且斜率為k的直線l交橢圓于A,B兩點.
(1)求橢圓C的標準方程及k的取值范圍;
(2)在y軸上是否存在定點E,使$\overrightarrow{AE}$•$\overrightarrow{BE}$恒為定值?若存在,求出點E的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知定圓⊙F1:x2+y2+4x+3=0,⊙F2:x2+y2-4x-5=0,動圓M與圓F1、F2都外切或都內(nèi)切.
(1)求動圓圓心M的軌跡曲線C的方程.
(2)過點F1的直線l與曲線C交于A、B兩點,與⊙F2交于P、Q兩點,若|PQ|=2,求|AB|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知集合A=$\{x|{(\frac{1}{2})^x}<1\}$,B={x|lgx>0}則A∪B等于( 。
A.{x|x>0}B.{x|x>1}C.RD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.如果對定義在R上的函數(shù)f(x),對任意兩個不相等的實數(shù)x1,x2都有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),則稱函數(shù)f(x)“H函數(shù)”.下列函數(shù)是“H函數(shù)”的所有序號為①③.
①y=ex+x;②y=x2;③y=3x-sinx;④$\left\{\begin{array}{l}ln|x|,x≠0\\ 0,x=0\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.程序框圖如圖所示,若輸入值t∈(0,3),則輸出值S的取值范圍是( 。
A.(0,4)B.(0,4]C.[0,9]D.(0,3)

查看答案和解析>>

同步練習冊答案