分析 (1)根據(jù)數(shù)列的通項公式以及兩個數(shù)列項的關系建立方程即可求數(shù)列{an}與{bn}的通項公式;
(2)設cn=an•bn(n∈N*),求出{cn}的通項公式,利用錯位相減法即可求{cn}的前n項和為Sn.
解答 解:(1)∵第2項,第5項,第14項分別是等比數(shù)列{bn}的第2項,第3項,第4項.
∴b32=b2•b4即${a_5}^2={a_2}•{a_{14}}$,
∴${({a_1}+4d)^2}=({a_1}+d)({a_1}+13d)$
解得:d=2a1=2,
∴an=2n-1∴b2=a2=3,b3=a5=9,
則${b_n}={3^{n-1}}$.
(2)${c_n}=(2n-1)•{3^{n-1}}$,
∴${S_n}=1•{3^0}+3•{3^1}+5•{3^2}+…+(2n-1)•{3^{n-1}}$?,
∴$3{S_n}=1•{3^1}+3•{3^2}+5•{3^3}+…+(2n-1)•{3^n}$?
兩式相減,得-2Sn=1+2•(3+32+33+…+3n-1)-(2n-1)•3n
=1+2•$\frac{3(1-{3}^{n-1})}{1-3}$-(2n-1)•3n
=1+3n-3-(2n-1)•3n=-2-(2n-2)3n,
則Sn=1+(n-1)3n.
點評 本題主要考查數(shù)列通項公式的求解以及數(shù)列和的計算,利用錯位相減法是解決本題的關鍵.考查學生的計算能力.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | $\sqrt{3}$ | C. | 5 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3x+4y-20=0 | B. | 4x+3y-4=0 | C. | 3x-4y-15=0 | D. | 4x-3y+4=0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com