9.市教育局為了對(duì)學(xué)校教學(xué)水平和學(xué)校管理水平評(píng)價(jià),從某校學(xué)生中選出200人進(jìn)行統(tǒng)計(jì),其中對(duì)學(xué)校教學(xué)水平給出好評(píng)的學(xué)生人數(shù)為總數(shù)的60%,對(duì)學(xué)校管理水平給出好評(píng)的學(xué)生人數(shù)為總數(shù)的75%,其中對(duì)學(xué)校教學(xué)水平和學(xué)校管理水平給出好評(píng)的有80人.
對(duì)學(xué)校管理水平好評(píng)對(duì)學(xué)校管理水平不滿意合計(jì)
對(duì)學(xué)校教學(xué)水平好評(píng)
對(duì)學(xué)校教學(xué)水平不滿意
合計(jì)
(1)填寫(xiě)學(xué)校教學(xué)水平和學(xué)校管理水平評(píng)價(jià)的2×2列聯(lián)表:
(2)問(wèn):是否可以在犯錯(cuò)誤概率不超過(guò)0.1%的前提下,認(rèn)為學(xué)校的教學(xué)水平好評(píng)與學(xué)校管理水平好評(píng)有關(guān)?
p(k2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
$({{k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}})$其中n=a+b+c+d.

分析 (1)根據(jù)所給數(shù)據(jù),可得關(guān)于學(xué)校教學(xué)水平和學(xué)校管理水平評(píng)價(jià)的2×2列聯(lián)表;
(2)計(jì)算K2觀測(cè)值,與臨界值比較,即可得出結(jié)論.

解答 解:(1)由題意可得關(guān)于學(xué)校教學(xué)水平和學(xué)校管理水平評(píng)價(jià)的2×2列聯(lián)表:

對(duì)學(xué)校管理水平好評(píng)對(duì)學(xué)校管理水平不滿意合計(jì)
對(duì)學(xué)校教學(xué)水平好評(píng)8040120
對(duì)學(xué)校教學(xué)水平不滿意701080
合計(jì)15050200
…(6分)
(2)由題意可得${κ^2}={\frac{{200×({80×10-70×40})}}{150×50×120×80}^2}≈11.111>10.828$
可見(jiàn)在犯錯(cuò)誤概率不超過(guò)0.1%的前提下,認(rèn)為學(xué)校教學(xué)水平好評(píng)與學(xué)校管理水平好評(píng)有關(guān).…(12分)

點(diǎn)評(píng) 本題考查了獨(dú)立性檢驗(yàn)的應(yīng)用,掌握檢驗(yàn)方法是關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.我們將一個(gè)四面體四個(gè)角中直角三角形的個(gè)數(shù)定義為此四面體的直度,在四面體ABCD中,AD⊥平面ABC,AC⊥BC,則四面體ABCD的直度為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.直角坐標(biāo)平面內(nèi),過(guò)點(diǎn)P(2,1)且與圓x2-x+y2+2y-4=0相切的直線( 。
A.有兩條B.有且僅有一條C.不存在D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知拋物線C:y2=4x的焦點(diǎn)為F,P(1,m)是拋物線C上的一點(diǎn).
(1)若橢圓$C':\frac{x^2}{4}+\frac{y^2}{n}=1$與拋物線C有共同的焦點(diǎn),求橢圓C'的方程;
(2)設(shè)拋物線C與(1)中所求橢圓C'的交點(diǎn)為A、B,求以O(shè)A和OB所在的直線為漸近線,且經(jīng)過(guò)點(diǎn)P的雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.若復(fù)數(shù)z滿足2z+$\overline{z}$=3-2i,其中i為虛數(shù)單位,則|z|=$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知圓C:(x-1)2+y2=r2(r>0)與直線l:y=x+3,且直線l上有唯一的一個(gè)點(diǎn)P,使得過(guò)點(diǎn)P作圓C的兩條切線互相垂直.設(shè)EF是直線l上的一條線段,若對(duì)于圓C上的任意一點(diǎn)Q,$\overrightarrow{QE}•\overrightarrow{QF}≤0$,則$|{\overrightarrow{EF}}|$的最小值是4+4$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知f(x)=x2+3xf'(2),則f(2)=-8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知橢圓的焦點(diǎn)在y軸上,長(zhǎng)軸長(zhǎng)為10,短軸長(zhǎng)為8,F(xiàn)1、F2為橢圓的左、右焦點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求橢圓的焦點(diǎn)坐標(biāo)、離心率;
(3)求以橢圓的焦點(diǎn)為頂點(diǎn)、頂點(diǎn)為焦點(diǎn)的雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.為了測(cè)算如圖陰影部分的面積,作一個(gè)邊長(zhǎng)為3的正方形將其包含在內(nèi),并向正方形內(nèi)隨機(jī)投擲600個(gè)點(diǎn),已知恰有200個(gè)點(diǎn)落在陰影部分內(nèi),據(jù)此,可估計(jì)陰影部分的面積是( 。
A.12B.9C.3D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案