【題目】如圖所示的幾何體中,正方形所在平面垂直于平面,四邊形為平行四邊形,為上一點(diǎn),且平面,.
(1)求證:平面平面;
(2)當(dāng)三棱錐體積最大時(shí),求直線與平面所成角的正切值.
【答案】(1)證明見解析(2)
【解析】
(1)易證平面,進(jìn)而可得,由平面,得,從此即可得證;
(2)由等體積法分析得當(dāng)最大時(shí),三棱錐體積最大,此時(shí),
(1)因?yàn)槠矫?/span>平面,平面平面,
四邊形為正方形,即,平面,
所以平面,
又因?yàn)?/span>平面,所以,
因?yàn)?/span>平面,平面,
所以,
因?yàn)?/span>,平面,
所以平面,
因?yàn)?/span>平面,
所以平面平面.
(2),
求三棱錐體積的最大值,只需求的最大值.
令,,
由(1)知,,
所以,當(dāng)且僅當(dāng),
即時(shí),,
因?yàn)樗倪呅?/span>為平行四邊形,所以,
因?yàn)?/span>平面,
所以直線與平面所成角的正切值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形為等腰梯形,為正方形,平面平面,,.
(1)求證:平面平面;
(2)點(diǎn)為線段上一動(dòng)點(diǎn),求與平面所成角正弦值的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知無窮數(shù)列的各項(xiàng)都是正數(shù),其前項(xiàng)和為,且滿足:,,其中,常數(shù).
(1)求證:是一個(gè)定值;
(2)若數(shù)列是一個(gè)周期數(shù)列(存在正整數(shù),使得對任意,都有成立,則稱為周期數(shù)列,為它的一個(gè)周期),求該數(shù)列的最小周期;
(3)若數(shù)列是各項(xiàng)均為有理數(shù)的等差數(shù)列,(),問:數(shù)列中的所有項(xiàng)是否都是數(shù)列中的項(xiàng)?若是,請說明理由;若不是,請舉出反例.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為給定的不小于的正整數(shù),考察個(gè)不同的正整數(shù),,,構(gòu)成的集合,若集合的任何兩個(gè)不同的非空子集所含元素的總和均不相等,則稱集合為“差異集合”.
(1)分別判斷集合,集合是否是“差異集合”;(只需寫出結(jié)論)
(2)設(shè)集合是“差異集合”,記,求證:數(shù)列的前項(xiàng)和;
(3)設(shè)集合是“差異集合”,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市為鼓勵(lì)人們綠色出行,乘坐地鐵,地鐵公司決定按照乘客經(jīng)過地鐵站的數(shù)量實(shí)施分段優(yōu)惠政策,不超過站的地鐵票價(jià)如下表:
乘坐站數(shù) | |||
票價(jià)(元) |
現(xiàn)有甲、乙兩位乘客同時(shí)從起點(diǎn)乘坐同一輛地鐵,已知他們乘坐地鐵都不超過站.甲、乙乘坐不超過站的概率分別為, ;甲、乙乘坐超過站的概率分別為, .
(1)求甲、乙兩人付費(fèi)相同的概率;
(2)設(shè)甲、乙兩人所付費(fèi)用之和為隨機(jī)變量,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位共有老年人120人,中年人360人,青年人n人,為調(diào)查身體健康狀況,需要從中抽取一個(gè)容量為m的樣本,用分層抽樣的方法進(jìn)行抽樣調(diào)查,樣本中的中年人為6人,則n和m的值不可以是下列四個(gè)選項(xiàng)中的哪組( )
A.n=360,m=14B.n=420,m=15C.n=540,m=18D.n=660,m=19
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,,滿足.
(1)將表示為的函數(shù),并求的最小正周期;
(2)已知、、分別為銳角的三個(gè)內(nèi)角、、對應(yīng)的邊長,的最大值是,且,求周長的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】第28屆金雞百花電影節(jié)將于11月19日至23日在福建省廈門市舉辦,近日首批影展片單揭曉,《南方車站的聚會(huì)》《春江水暖》《第一次的離別》《春潮》《抵達(dá)之謎》五部優(yōu)秀作品將在電影節(jié)進(jìn)行展映.若從這五部作品中隨機(jī)選擇兩部放在展映的前兩位,則《春潮》與《抵達(dá)之謎》至少有一部被選中的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的三個(gè)頂點(diǎn)均在拋物線上,給出下列命題:
①若直線過點(diǎn),則存在使拋物線的焦點(diǎn)恰為的重心;
②若直線過點(diǎn),則存在點(diǎn)使為直角三角形;
③存在,使拋物線的焦點(diǎn)恰為的外心;
④若邊的中線軸,,則的面積為.
其中正確的序號(hào)為______________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com