7.若冪函數(shù)f(x)的圖象經(jīng)過點(diǎn)(2,$\frac{1}{4}$),則f(3)=$\frac{1}{9}$.

分析 先用待定系數(shù)法求出冪函數(shù)的解析式,再求函數(shù)的值即可.

解答 解:設(shè)冪函數(shù)y=xα(α∈R),
其函數(shù)圖象經(jīng)過點(diǎn)(2,$\frac{1}{4}$),
∴2α=$\frac{1}{4}$;
解得α=-2,
∴y=f(x)=x-2
∴f(3)=$\frac{1}{9}$,
故答案為:$\frac{1}{9}$.

點(diǎn)評 本題考查了求冪函數(shù)的解析式以及求函數(shù)值的問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.命題“?x0∈R,x02+x0-1<0”的否定是( 。
A.?x∈R,x2+x-1≥0B.?x∈R,x2+x-1<0
C.?x0∈R,x02+x0-1≥0D.?x0∈R,x02+x0-1>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.2016年某招聘會上,有5個條件很類似的求職者,把他們記為A,B,C,D,E,他們應(yīng)聘秘書工作,但只有2個秘書職位,因此5人中僅有2人被錄用,如果5個人被錄用的機(jī)會相等,分別計(jì)算下列事件的概率:
(1)C得到一個職位
(2)B或E得到一個職位.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.不等式(x2-2x-3)(x-2)<0的解集為(-∞,-1)∪(2,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)U={1,2,3,4,5},A={1,2,5},B={2,3,4},則B∩∁UA=( 。
A.B.{2}C.{3,4}D.{1,3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè){an}是公比為q的等比數(shù)列,則“q>1”是“{an}為單調(diào)遞增數(shù)列”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,在直三棱柱ABC-A1B1C1中,D是AB的中點(diǎn).
(1)求證:BC1∥平面A1CD;
(2)若AA1=AC=CB=5,AB=6,求三棱錐D-AA1C的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知$\overrightarrow{a}$=(cosα,1,sinα),$\overrightarrow$=(sinα,1,cosα),則向量$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$的夾角是( 。
A.90°B.60°C.30°D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-1+\frac{3}{5}t}\\{y=1+\frac{4}{5}t}\end{array}\right.$(t為參數(shù))與曲線C:y2-x2=1交于A,B兩點(diǎn).
(1)求|AB|的長;
(2)求AB中點(diǎn)M的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案