12.設{an}是公比為q的等比數(shù)列,則“q>1”是“{an}為單調(diào)遞增數(shù)列”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 根據(jù)等比數(shù)列的性質(zhì),結(jié)合充分條件和必要條件的定義進行判斷即可得到結(jié)論.

解答 解:等比數(shù)列-1,-2,-4,…,滿足公比q=2>1,但{an}不是遞增數(shù)列,充分性不成立.
若an=-1•($\frac{1}{2}$)n-1為遞增數(shù)列,但q=$\frac{1}{2}$>1不成立,即必要性不成立,
故“q>1”是“{an}為遞增數(shù)列”的既不充分也不必要條件,
故選:D.

點評 本題主要考查充分條件和必要條件的判斷,利用等比數(shù)列的性質(zhì),利用特殊值法是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

2.函數(shù)f(x)=xlnx的單調(diào)遞減區(qū)間為(  )
A.$(0,\frac{1}{e})$B.$(-∞,\frac{1}{e})$C.(-∞,-e)D.$(\frac{1}{e},+∞)$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如圖所示,四棱錐P-ABCD的底面ABCD是邊長為1的菱形,∠BCD=60°,E是CD的中點,PA⊥底面ABCD,PA=2.
(Ⅰ)證明:平面PBE⊥平面PAB;
(Ⅱ)求二面角B-PE-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知等差數(shù)列{an}的公差d大于0,且a2,a5是方程x2-12x+27=0的兩根,數(shù)列{bn}的前n項和為Sn,且Sn=$\frac{3}{2}$(bn-1),(n∈N+).
(1)求數(shù)列{an},{bn}的通項公式;
(2)若cn=an•bn,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.若冪函數(shù)f(x)的圖象經(jīng)過點(2,$\frac{1}{4}$),則f(3)=$\frac{1}{9}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)$f(x)={log_2}({x^2}+2)$,$\overrightarrow a=(m,1)$,$\overrightarrow b=(\frac{1}{2},\frac{m}{2})$,且m>0,若$f(\overrightarrow a•\overrightarrow b)≥f(|\overrightarrow a-\overrightarrow b|)$,試求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知x,y∈R,滿足x2+2xy+4y2=6,則z=x+y的取值范圍為$[-\sqrt{6},\sqrt{6}]$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知直線l經(jīng)過點(0,-2),其傾斜角的大小是60°,則直線l與兩坐標軸圍成三角形的面積S等于( 。
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{2\sqrt{3}}}{3}$C.$\frac{{3\sqrt{3}}}{3}$D.$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.如圖,一豎立在地面上的圓錐形物體的母線長為4,一只小蟲從圓錐的底面圓上的點P出發(fā),繞圓錐爬行一周后回到點P處,若該小蟲爬行的最短路程為$4\sqrt{3}$,則這個圓錐的體積為( 。
A.$\frac{{\sqrt{15}}}{3}$B.$\frac{{32\sqrt{35}π}}{27}$C.$\frac{{128\sqrt{2}π}}{81}$D.$\frac{{8\sqrt{3}}}{3}$

查看答案和解析>>

同步練習冊答案