15.從雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點F引圓x2+y2=a2的切線,切點為T,延長FT交雙曲線右支于點P,若M是線段FP的中點,O為原點,則|MO|-|MT|的值是b-a.

分析 設F′是雙曲線的右焦點,連接PF′.利用三角形的中位線定理和雙曲線的定義可得:|OM|=$\frac{1}{2}$|PF′|=$\frac{1}{2}$(|PF|-2a)=$\frac{1}{2}$|PF|-a=|MF|-a,于是|OM|-|MT|=|MF|-|MT|-a=|FT|-a,連接OT,則OT⊥FT,在Rt△FOT中,|OF|=c,|OT|=a,可得|FT|=$\sqrt{|OF{|}^{2}-|OT{|}^{2}}$=b.即可得出結論.

解答 解:如圖所示,
設F′是雙曲線的右焦點,連接PF′.
∵點M,O分別為線段PF,F(xiàn)F′的中點,
由三角形中位線定理得到:|OM|=$\frac{1}{2}$|PF′|=$\frac{1}{2}$(|PF|-2a)=$\frac{1}{2}$|PF|-a=|MF|-a,
∴|OM|-|MT|=|MF|-|MT|-a=|FT|-a,連接OT,因為PT是圓的切線,則OT⊥FT,
在Rt△FOT中,|OF|=c,|OT|=a,∴|FT|=$\sqrt{|OF{|}^{2}-|OT{|}^{2}}$=b.
∴|OM|-|MT|=b-a.
故答案為:b-a.

點評 本題考查了雙曲線的定義和性質(zhì)的運用,結合三角形的中位線定理、直線與圓相切的性質(zhì)等知識,考查學生的計算能力和分析能力,是中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

3.已知數(shù)列{an}滿足a1=8,a2=0,a3=-7,且數(shù)列{an+1-an}為等差數(shù)列,則{an}的最小項為(  )
A.-30B.-29C.-28D.-27

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.如圖,在三棱錐P-ABC中,BC⊥平面APC,AB=2$\sqrt{3}$,AP=PC=CB=2.
(1)求證:AP⊥平面PBC;
(2)求二面角P-AB-C的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.當x∈[1,2],函數(shù)y=$\frac{1}{2}$x2與y=ax(a>0)的圖象有交點,則a的取值范圍是( 。
A.[$\frac{1}{2}$,2]B.[$\frac{1}{2}$,$\sqrt{2}$]C.[$\frac{1}{4}$,2]D.[$\frac{1}{4}$,$\sqrt{2}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.設△ABC的內(nèi)角A,B,C所對邊的長分別a,b,c,若b+c=2a,3sinA=5sinB,則角C=( 。
A.$\frac{π}{3}$B.$\frac{3π}{4}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知a>b>0,那么下列不等式成立的是(  )
A.2b-2a>0B.b2-a2>0C.|b|>|a|D.2a>2b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知數(shù)列{an}是公差不為0的等差數(shù)列,a1=2,且a1,a3,a11成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若${b_n}={a_n}-{2^n}-\frac{1}{2}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知點P在直線x+3y-2=0上,點Q在直線x+3y+6=0上,線段PQ的中點為M(x0,y0),且y0<x0+2,則$\frac{{y}_{0}}{{x}_{0}}$的取值范圍是( 。
A.[-$\frac{1}{3}$,0)B.(-∞,-$\frac{1}{3}$)∪(0,+∞)C.(-$\frac{1}{3}$,0)D.(-$\frac{1}{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.執(zhí)行如圖所示的程序框圖,若輸入p=5,則輸出的S等于$\frac{31}{32}$

查看答案和解析>>

同步練習冊答案