9.求值:
(1)${0.027^{-\frac{1}{3}}}-{(-\frac{1}{7})^{-2}}+{256^{\frac{3}{4}}}-{3^{-1}}$+1
(2)log43•log92+log2$\root{4}{64}$.

分析 根據(jù)指數(shù)冪和對數(shù)的運(yùn)算性質(zhì)計(jì)算即可.

解答 解:(1).${0.027^{-\frac{1}{3}}}-{(-\frac{1}{7})^{-2}}+{256^{\frac{3}{4}}}-{3^{-1}}+1$
=${({0.3^3})^{-\frac{1}{3}}}-{(-7)^2}+{({4^4})^{\frac{3}{4}}}-\frac{1}{3}+1$,
=19                             
(2)$原式=\frac{lg3}{lg4}•\frac{lg2}{lg9}+{log_2}{2^{\frac{6}{4}}}$=$\frac{1}{4}+\frac{6}{4}$=$\frac{7}{4}$

點(diǎn)評(píng) 本題考查了指數(shù)冪和對數(shù)的運(yùn)算性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知△ABC的頂點(diǎn)是A(-1,-1),B(3,1),C(1,6),直線l平行于AB,且分別交AC、BC于E、F,△CEF的面積是△CAB面積的$\frac{1}{4}$,則直線l的方程為x-2y+5=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.給出下列四個(gè)命題:
①若平面α∥β,直線a?α,直線b?β,則a∥b      
②若直線a∥b,a∥α,則b∥α
③若平面α∥β,直線a?α,則a∥β         
④若直線a∥α,a∥β,則α∥β
其中正確命題有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在△ABC中,角A、B、C所對邊分別為a、b、c,若a2+b2=4a+6b-13,sinC=2sinA,則cosC的值為( 。
A.-$\frac{1}{4}$B.$\frac{1}{4}$C.$\frac{7}{8}$D.$\frac{11}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.計(jì)算:${(-2)^{-3}}+{(\frac{1}{4})^0}-{9^{-\frac{1}{2}}}$=$\frac{13}{24}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知冪函數(shù)f(x)=xa的圖象經(jīng)過點(diǎn)($\root{3}{2}$,2),則函數(shù)f(x)的解析式為f(x)=x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.函數(shù)f(x)是定義域?yàn)镽的單調(diào)增函數(shù),且f(x)是奇函數(shù),當(dāng)x>0時(shí),f(x)=log2(1+x)
(1)求f(x)的解析式;
(2)解關(guān)于t的不等式f(t2-2t)+f(2t2-5)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=-x2+ex-1(x≤1)與g(x)=ln(-x+a)的圖象上存關(guān)于直線y=x-1對稱的點(diǎn),則a的取值范圍是( 。
A.(-∞,-2]B.[2,+∞)C.(-∞,2]D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆湖北襄陽四中高三七月周考三數(shù)學(xué)(文)試卷(解析版) 題型:解答題

已知

(1)若存在使得≥0成立,求的范圍;

(2)求證:當(dāng)>1時(shí),在(1)的條件下,成立.

查看答案和解析>>

同步練習(xí)冊答案