20.已知函數(shù)f(x)=-ax5-x3+bx-7,若f(2)=-9,則f(-2)=-5.

分析 令g(x)=-ax5-x3+bx,則g(2)=-2,又 g(x)為奇函數(shù),故有g(shù)(-2)=2,f(-2)=g(-2)-7=-5.

解答 解:∵函數(shù)f(x)=-ax5-x3+bx-7,f(2)=-9,
令g(x)=-ax5-x3+bx,則g(2)=-2,
又g(x)為奇函數(shù),∴g(-2)=2,故 f(-2)=g(-2)-7=-5,
故答案為-5.

點評 本題考查函數(shù)的奇偶性的應(yīng)用,求函數(shù)值,令g(x)=-ax5-x3+bx,求出g(2)=-2是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.用如圖所示的幾何體中,四邊形BB1C1C是矩形,BB1⊥平面ABC,A1B1∥AB,AB=2A1B1,E是AC的中點.
(1)求證:A1E∥平面BB1C1C;
(2)若AC=BC,AB=2BB1,求二面角A-BA1-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列命題中為真命題的是( 。
A.若x≠0,則x+$\frac{1}{x}$≥2
B.若直線x-ay=0與直線x-ay=0互相垂直,則a=1
C.命題:“若x2=1,則x=1或x=-1”的逆否命題為:“若x≠1,且x≠-1,則x2≠1”
D.一個命題的否命題為真,則它的逆否命題一定為真

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知$a={2^{\frac{1}{2}}},b={({2^{{{log}_2}^3}})^{-\frac{1}{2}}}$,c=cos50°cos10°+cos140°sin170°,則實數(shù)a,b,c的大小關(guān)系是(  )
A.a>c>bB.b>a>cC.a>b>cD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,O為AD中點,M是棱PC上的點,AD=2BC.
(1)求證:平面POB⊥平面PAD;
(2)若PA∥平面BMO,求$\frac{PM}{MC}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)f(x)=ax2+(b-2a)x-2b為偶函數(shù),且在(0,+∞)單調(diào)遞減,則f(x)>0的解集為{x|-2<x<2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知球O的半徑為2,四點S、A、B、C均在球O的表面上,且SC=4,AB=$\sqrt{3}$,∠SCA=∠SCB=$\frac{π}{6}$,則點B到平面SAC的距離為(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{3}{2}$C.$\frac{\sqrt{3}}{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.要得到函數(shù)f(x)=cos2x的圖象,只需將函數(shù)g(x)=sin2x的圖象( 。
A.向左平移$\frac{1}{2}$個周期B.向右平移$\frac{1}{2}$個周期
C.向左平移$\frac{1}{4}$個周期D.向右平移$\frac{1}{4}$個周期

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.函數(shù)f(x)=$\frac{1}{ln(4x-3)}$的定義域為{x|x>$\frac{3}{4}$且x≠1}.

查看答案和解析>>

同步練習(xí)冊答案