4.[普通中學(xué)做]設(shè)H、P是△ABC所在平面上異于A、B、C的兩點,用$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$,$\overrightarrow{h}$分別表示向量$\overrightarrow{PA}$,$\overrightarrow{PB}$,$\overrightarrow{PC}$,$\overrightarrow{PH}$.已知$\overrightarrow{a}$•$\overrightarrow$+$\overrightarrow{c}$•$\overrightarrow{h}$=$\overrightarrow$•$\overrightarrow{c}$+$\overrightarrow{a}$•$\overrightarrow{h}$=$\overrightarrow{c}$•$\overrightarrow{a}$+$\overrightarrow$•$\overrightarrow{h}$,|$\overrightarrow{AB}$|=|$\overrightarrow{AC}$|=5,|$\overrightarrow{BC}$|=6,則|$\overrightarrow{AH}$|=(  )
A.$\frac{7}{4}$B.$\frac{7}{5}$C.$\frac{15}{4}$D.$\frac{5}{2}$

分析 根據(jù)向量數(shù)量積的公式和條件進行化簡得到H是△ABC的垂心,結(jié)合三角形的邊角關(guān)系進行求解即可.

解答 解:由題意知$\overrightarrow{PA}$•$\overrightarrow{PB}$+$\overrightarrow{PC}$•$\overrightarrow{PH}$=$\overrightarrow{PB}$•$\overrightarrow{PC}$+$\overrightarrow{PA}$•$\overrightarrow{PH}$,
即$\overrightarrow{PB}$•($\overrightarrow{PA}$-$\overrightarrow{PC}$)+$\overrightarrow{PH}$•($\overrightarrow{PC}$-$\overrightarrow{PA}$)=0,即$\overrightarrow{CA}$•$\overrightarrow{HB}$=0.
同理得$\overrightarrow{AB}$•$\overrightarrow{HC}$=0,故H是△ABC的垂心,如圖所示,
在Rt△CAD中,tan∠CAD=$\frac{3}{4}$,
∵∠CAD=∠CBE,
∴$\frac{DH}{3}$=$\frac{3}{4}$,即DH=$\frac{9}{4}$,
∴AH=4-$\frac{9}{4}$=$\frac{7}{4}$,
故選:A.

點評 本題主要考查向量數(shù)量積的應(yīng)用,根據(jù)條件判斷H是△ABC的垂心是解決本題的關(guān)鍵.綜合性較強,考查學(xué)生的轉(zhuǎn)化和運算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)函數(shù)f(x)=x3+ax2+b(a,b∈R),當(dāng)x=$\frac{4}{3}$時,f(x)取極小值0,則實數(shù)b=$\frac{32}{27}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列函數(shù)中x=0是極值點的函數(shù)是( 。
A.f(x)=|x|B.f(x)=-x3C.f(x)=sinx-xD.f(x)=$\frac{1}{{x}^{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=a(x-$\frac{1}{x}$)-2lnx(a∈R).
(1)若a=1,求曲線f(x)在點(1,f(1))處的切線方程;
(2)設(shè)g(x)=f(x)+$\frac{a}{x}$,求函數(shù)y=g(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.某學(xué)校決定從高一(1)班60名學(xué)生中利用隨機數(shù)表法抽取10人進行調(diào)研,先將60名學(xué)生按01,02,…,60進行編號;如果從第8行第7列的數(shù)開始從左向右讀,則抽取到的第4個人的編號為( 。
(下面摘取了第7行到第9行)
8442 1753 3157 2455 0688  7704 7447 6721 7633 5026  8392 
6301 5316 5916 9275 3862  9821 5071 7512 8673 5807  4439 
1326    3321 1342 7864 1607      8252 0744 3815 0324    4299    7931.
A.16B.38C.21D.50

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某班n名學(xué)生的綜合素質(zhì)測評成績(百分制)頻率分布直方圖如圖所示,已知70~80分數(shù)段的學(xué)生人數(shù)為27人,90~95分數(shù)段的學(xué)生中女生為2人.
(1)求a,n的值;(2)若從90~95分數(shù)段內(nèi)的學(xué)生中隨機抽取2人,求其中至少有一名女生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)=(sinx+cosx)cosx,則f(x)的最大值是$\frac{\sqrt{2}+1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=x2ex-b,其中b∈R.
(Ⅰ)證明:對于任意x1,x2∈(-∞,0],都有f(x1)-f(x2)≤$\frac{4}{{e}^{2}}$;
(Ⅱ)討論函數(shù)f(x)的零點個數(shù)(結(jié)論不需要證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知坐標(biāo)平面內(nèi)兩個定點F1(-4,0),F(xiàn)2(4,0),且動點M滿足|MF1|+|MF2|=8,則點M的軌跡是( 。
A.兩個點B.一個橢圓C.一條線段D.兩條直線

查看答案和解析>>

同步練習(xí)冊答案