8.已知sin(x-40°)=cos(x+10°)-cos(x-10°),則tanx=$\frac{\sqrt{3}}{3}$.

分析 由和差角的公式變形已知式子可得tanx=$\frac{sin40°}{cos40°+2sin10°}$,再由和差角的公式化簡(jiǎn)即可.

解答 解:∵sin(x-40°)=cos(x+10°)-cos(x-10°),
∴sinxcos40°-cosxsin40°=cosxcos10°-sinxsin10°-cosxcos10°-sinxsin10°,
∴sinxcos40°-cosxsin40°=-2sinxsin10°,
∴(cos40°+2sin10°)sinx=cosxsin40°,
∴tanx=$\frac{sinx}{cosx}$=$\frac{sin40°}{cos40°+2sin10°}$=$\frac{sin40°}{cos(30°+10°)+2sin10°}$
=$\frac{sin40°}{\frac{\sqrt{3}}{2}cos10°-\frac{1}{2}sin10°+2sin10°}$=$\frac{sin40°}{\frac{\sqrt{3}}{2}cos10°+\frac{3}{2}sin10°}$
=$\frac{sin40°}{\sqrt{3}(\frac{1}{2}cos10°+\frac{\sqrt{3}}{2}sin10°)}$=$\frac{sin40°}{\sqrt{3}sin(30°+10°)}$=$\frac{\sqrt{3}}{3}$
故答案為:$\frac{{\sqrt{3}}}{3}$

點(diǎn)評(píng) 本題考查和差角的三角函數(shù)公式,熟練應(yīng)用公式是解決問(wèn)題的關(guān)鍵,屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.設(shè)奇函數(shù)f(x)與g(x)偶函數(shù)的定義域都為(-∞,+∞),且滿足f(x)+g(x)=2x,有下列命題:
①g(x)≥1在(-∞,+∞)恒成立;
②f(x)2-g(x)2=-1在(-∞,+∞)恒成立;
③f(x)≤g(x)在(-∞,+∞)恒成立;
④g(2x)=2f(x)g(x)在(-∞,+∞)恒成立.
則真命題是①②③(填所有真命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知點(diǎn)M(3,1),直線ax-y+4=0及圓C:(x-1)2+(y-2)2=4
(1)若直線ax-y+4=0與圓C相切,求a的值;
(2)若直線ax-y+4=0與圓C相交于A,B兩點(diǎn),且弦AB的長(zhǎng)為2$\sqrt{3}$,求a的值;
(3)求過(guò)點(diǎn)M的圓C的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.某校1000名學(xué)生期中考試數(shù)學(xué)成績(jī)的頻率分布直方圖如圖所示,其中成績(jī)分組區(qū)間是:[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求圖中a的值;
(2)根據(jù)頻率分布直方圖,估計(jì)這1000名學(xué)生數(shù)學(xué)成績(jī)的平均分;
(3)若這1000名學(xué)生數(shù)學(xué)成績(jī)某些分?jǐn)?shù)段的人數(shù)(x)與語(yǔ)文成績(jī)相應(yīng)分?jǐn)?shù)段的人數(shù)(y)之比如表所示,求語(yǔ)文成績(jī)?cè)赱50,90)之外的人數(shù).
分?jǐn)?shù)段[50,60)[60,70)[70,80)[80,90)
x:y1:14:53:22:1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=-x2+2x+2a|x-a|+b,其中常數(shù)a,b∈R.
(1)若a=1,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若對(duì)任意實(shí)數(shù)$a∈[\frac{1}{2},2]$,不等式f(x)<0在$x∈[-\frac{1}{2},1]$上恒成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.將一枚質(zhì)地均勻的硬幣連拋三次,則“至少出現(xiàn)一次正面向上”的概率是$\frac{7}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.函數(shù)y=x3-x2-x的單調(diào)遞減區(qū)間為($-\frac{1}{3}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知集合M={x|-2<x<4},N={x|3x>$\frac{1}{3}$},則M∩N=(-2,4),M∪N=(-2,+∞),M∪∁RN=(-2,-1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.定積分${∫}_{1}^{2}$(2x+$\frac{1}{x}$)dx的值為3+ln2.

查看答案和解析>>

同步練習(xí)冊(cè)答案