5.設(shè)集合A={0,1,2,4},B=$\left\{{\left.{x∈R|\frac{x-4}{x-2}≤0}\right\}}$,則A∩B=(  )
A.{1,2,3,4}B.{2,3,4}C.{4}D.{x|1<x≤4}

分析 求出B中不等式的解集確定出B,找出A與B的交集即可.

解答 解:由B中不等式變形得:(x-4)(x-2)≤0,且x≠2,
解得:2<x≤4,即B=(2,4],
∵A={0,1,2,4},
∴A∩B={4},
故選:C.

點(diǎn)評(píng) 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若0<x<y<1,則(  )
A.3y<3xB.log4x<log4yC.($\frac{1}{4}$)x<($\frac{1}{4}$)yD.logx3<logy3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.《算法通宗》是我國(guó)古代內(nèi)容豐富的數(shù)學(xué)名著,書中有如下問題:“遠(yuǎn)望巍巍栽塔七層紅燈點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問塔頂幾盞燈?”( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知sinα=-$\frac{\sqrt{3}}{2}$,且α為第四象限角,則tanα的值為( 。
A.$\frac{{\sqrt{3}}}{3}$B.$-\sqrt{3}$C.$-\frac{{\sqrt{3}}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.$\root{6}{(a-b)^{6}}$(a<b)=b-a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知A是雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左頂點(diǎn),F(xiàn)1,F(xiàn)2分別為雙曲線的左、右焦點(diǎn),P為雙曲線上一點(diǎn),G是△PF1F2的重心,若$\overrightarrow{GA}$=λ$\overrightarrow{P{F}_{1}}$,則雙曲線的漸近線方程為( 。
A.$y=±\sqrt{3}x$B.$y=±2\sqrt{2}x$C.$y=±\frac{{\sqrt{5}}}{2}x$D.與λ的取值有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.f(x)=sin(x+θ),|θ|<$\frac{π}{2}$,函數(shù)圖象向右平移$\frac{π}{3}$個(gè)單位后得到的函數(shù)為奇函數(shù),則θ值等于( 。
A.$\frac{π}{2}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.-$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若M(x,y)滿足$2\sqrt{5}\sqrt{{{(x-2)}^2}+{{(y-1)}^2}}=|{2x+y-4}|$,則M的軌跡( 。
A.雙曲線B.直線C.橢圓D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知a,b都是正實(shí)數(shù),且滿足log9(9a+b)=log3$\sqrt{ab}$,則3a+b的最小值為12+6$\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案