17.f(x)=sin(x+θ),|θ|<$\frac{π}{2}$,函數(shù)圖象向右平移$\frac{π}{3}$個單位后得到的函數(shù)為奇函數(shù),則θ值等于( 。
A.$\frac{π}{2}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.-$\frac{π}{6}$

分析 根據(jù)圖象向右平移$\frac{π}{3}$個單位后得到的函數(shù) y=sin(x-$\frac{π}{3}$+θ)是奇函數(shù),可得θ=kπ+$\frac{π}{3}$,k∈z,結(jié)合范圍|θ|<$\frac{π}{2}$,即可得解θ的值.

解答 解:函數(shù)f(x)=sin(x+θ),其圖象向右平移$\frac{π}{3}$個單位后得到的圖象對應(yīng)的函數(shù)為y=sin(x-$\frac{π}{3}$+θ)是奇函數(shù),
θ-$\frac{π}{3}$=kπ,k∈z,即θ=kπ+$\frac{π}{3}$,k∈z,
又|θ|<$\frac{π}{2}$,
故θ=$\frac{π}{3}$.
故選:C.

點評 本題主要考查了y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的對稱性,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足$sinA(sinB+\sqrt{3}cosB)=\sqrt{3}sinC$.
(1)求角A的大;    
(2)若$a=2\sqrt{3},\;b+c=4$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知集合A={x|x2-x-2>0},函數(shù)g(x)=$\sqrt{3-|x|}$的定義域為集合B,
(1)求A∩B和A∪B;
(2)若C={x|4x+p<0},且C⊆A,求實數(shù)P的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)集合A={0,1,2,4},B=$\left\{{\left.{x∈R|\frac{x-4}{x-2}≤0}\right\}}$,則A∩B=(  )
A.{1,2,3,4}B.{2,3,4}C.{4}D.{x|1<x≤4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.(理)64個正數(shù)排成8行8列,如圖所示:在符號aij(1≤i≤8,1≤j≤8)中,i表示該數(shù)所在的行數(shù),j表示該數(shù)所在的列數(shù).已知每一行都成等差數(shù)列,而每一列都成等比數(shù)列(且每列公比都相等).若a11=$\frac{1}{2}$,a24=1,a32=$\frac{1}{4}$.則a81a82…a88…aij=j($\frac{1}{2}$)i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=lg(1-x)+lg(1+x)+x4-2x2
(Ⅰ)判斷函數(shù)f(x)的奇偶性;
(Ⅱ) 設(shè)1-x2=t,把f(x)表示為關(guān)于t的函數(shù)g(t)并求其值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.若2a=5b=m,且$\frac{1}{a}+\frac{1}=2$,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,已知矩形ABCD是圓柱O1O2的軸截面,N在上底面的圓周O2上,AC、BD相交于點M;
(1)求證:CN⊥平面ADN;
(2)已知圓錐MO1和圓錐MO2的側(cè)面展開圖恰好拼成一個半徑為2的圓,直線BC與平面CAN所成角的正切值為$\frac{{\sqrt{3}}}{6}$,求異面直線AB與DN所成角的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=$\sqrt{4-x}+{log_3}$(x-2)的定義域為集合A,函數(shù)$g(x)={log_2}x,(\frac{1}{4}≤x≤8)$的值域為集合B.
(1)求A∪B;
(2)若集合C={x|a≤x≤3a-1},且B∩C=C,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案