15.在(1+x)(2+x)5的展開式中,x3的系數(shù)為(  )
A.75B.100C.120D.130

分析 求出(2+x)5的展開式中含有x3的項(xiàng)和含有x2的項(xiàng),與第一個(gè)式子作積得答案.

解答 解:二項(xiàng)式(2+x)5的通項(xiàng)${T}_{r+1}={C}_{5}^{r}{2}^{5-r}{x}^{r}={2}^{5-r}{C}_{5}^{r}{x}^{r}$.
其中含有x3的項(xiàng)為${2}^{2}{C}_{5}^{2}{x}^{3}=40{x}^{3}$,含有x2的項(xiàng)為${2}^{3}{C}_{5}^{2}{x}^{2}=80{x}^{2}$,
∴在(1+x)(2+x)5的展開式中,x3的系數(shù)為1×40+1×80=120.
故選:C.

點(diǎn)評(píng) 本題考查二項(xiàng)式系數(shù)的性質(zhì),關(guān)鍵是熟記二項(xiàng)展開式的通項(xiàng),是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)經(jīng)過(guò)等腰梯形ABCD的上底的兩個(gè)頂點(diǎn)C、D,下底的兩個(gè)頂點(diǎn)A、B分別為雙曲線的左、右焦點(diǎn),對(duì)角線AC與雙曲線的左支交于點(diǎn)E,且3|AE|=2|EC|,|AB|=2|CD|,則該雙曲線的離心率是( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的兩條漸近線均與圓(x-2)2+y2=1相切,則雙曲線的離心率為$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知$\overrightarrow{AM}=-3\overrightarrow{MB}$,O為平面內(nèi)任意一點(diǎn),則下列各式成立的是( 。
A.$\overrightarrow{OM}=-\frac{1}{2}\overrightarrow{OA}+\frac{3}{2}\overrightarrow{OB}$B.$\overrightarrow{OM}=-\overrightarrow{OA}+2\overrightarrow{OB}$C.$\overrightarrow{OM}=2\overrightarrow{OA}-\overrightarrow{OB}$D.$\overrightarrow{OM}=\frac{3}{2}\overrightarrow{OA}-\frac{1}{2}\overrightarrow{OB}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知$x=\frac{π}{4}$是函數(shù)f(x)=asinx+cosx的一條對(duì)稱軸,若將函數(shù)f(x)的圖象向右平移φ(φ>0)個(gè)單位所得圖象關(guān)于y軸對(duì)稱,則φ的最小值為$\frac{3π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.設(shè)函數(shù)$D(x)=\left\{\begin{array}{l}1,x∈Q\\ 0,x∈{C_R}Q\end{array}\right.$,現(xiàn)有如下論述:
(1)D(x)的值域?yàn)閧0,1};(2)D(x)是偶函數(shù);(3)D(x+1)=D(x);(4)D(x)是單調(diào)函數(shù);
上述結(jié)論正確的序號(hào)有(1)(2)(3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.若函數(shù)$y={(\frac{1}{5})^{x+1}}+m$的圖象不過(guò)第一象限,則實(shí)數(shù)m的取值范圍是(-∞,-$\frac{1}{5}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知數(shù)列{an}的前n項(xiàng)和${s_n}=32n-{n^2}$,
(1)求數(shù)列{an}的通項(xiàng)公式;    
(2)求數(shù)列{an}的前多少項(xiàng)和最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.口袋中有5個(gè)小球,其中兩個(gè)黑球三個(gè)白球,從中隨機(jī)取出兩個(gè)球,則在取到的兩個(gè)球同色的條件下,取到的兩個(gè)球都是白球的概率( 。
A.$\frac{1}{10}$B.$\frac{3}{10}$C.$\frac{1}{4}$D.$\frac{3}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案