3.已知$\overrightarrow{AM}=-3\overrightarrow{MB}$,O為平面內(nèi)任意一點(diǎn),則下列各式成立的是( 。
A.$\overrightarrow{OM}=-\frac{1}{2}\overrightarrow{OA}+\frac{3}{2}\overrightarrow{OB}$B.$\overrightarrow{OM}=-\overrightarrow{OA}+2\overrightarrow{OB}$C.$\overrightarrow{OM}=2\overrightarrow{OA}-\overrightarrow{OB}$D.$\overrightarrow{OM}=\frac{3}{2}\overrightarrow{OA}-\frac{1}{2}\overrightarrow{OB}$

分析 用$\overrightarrow{OA},\overrightarrow{OB}$表示出$\overrightarrow{AM}$,則$\overrightarrow{OM}=\overrightarrow{OA}+\overrightarrow{AM}$.

解答 解:∵$\overrightarrow{AM}=-3\overrightarrow{MB}$,∴$\overrightarrow{AM}=\frac{3}{2}\overrightarrow{AB}$=$\frac{3}{2}\overrightarrow{OB}-\frac{3}{2}\overrightarrow{OA}$
∴$\overrightarrow{OM}$=$\overrightarrow{OA}+\overrightarrow{AM}$=-$\frac{1}{2}$$\overrightarrow{OA}$+$\frac{3}{2}\overrightarrow{OB}$.
故選:A.

點(diǎn)評(píng) 本題考查了平面向量的線性運(yùn)算的幾何意義,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.直線l的斜率為-1,在y軸上的截距為1,且與雙曲線3x2-y2=1交于A、B兩點(diǎn),求證:OA⊥OB(O為坐標(biāo)原點(diǎn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.雙曲線C:$\frac{x^2}{4}-{y^2}=1$的離心率是$\frac{\sqrt{5}}{2}$,焦距是2$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知點(diǎn)P為雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)右支上一點(diǎn),F(xiàn)1,F(xiàn)2分別為雙曲線的左右焦點(diǎn),且|F1F2|=$\frac{^{2}}{a}$,I為△PF1F2的內(nèi)心,若λS${\;}_{△IP{F}_{1}}$=λS${\;}_{△IP{F}_{2}}$+S${\;}_{△I{F}_{1}{F}_{2}}$成立,則λ的值為$\sqrt{2}$-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.設(shè)直線x-3y+t=0(t≠0)與雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的兩條漸近線分別交于點(diǎn)A,B.若點(diǎn)M(t,0)滿足|MA|=|MB|,則雙曲線的漸近線方程為( 。
A.y=±4xB.y=±2xC.y=±$\frac{1}{2}$xD.y=±$\frac{1}{4}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知-1,2,x成等比數(shù)列,則x=-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.在(1+x)(2+x)5的展開(kāi)式中,x3的系數(shù)為( 。
A.75B.100C.120D.130

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知A={x|-1<x<2},B={x|x>1}.
(1)求A∩B和A∪B;
(2)定義A-B={x|x∈A且x∉B},求A-B和B-A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知等差數(shù)列{an}的首項(xiàng)a1=1,公差d>0,數(shù)列{bn}是等比數(shù)列,且b2=a2,b3=a5,b4=a14
(I)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{cn}對(duì)任意正整數(shù)n,均有$\frac{c_1}{b_1}+\frac{c_2}{b_2}+…+\frac{c_n}{b_n}={a_{n+1}}$成立,求c1+c2+…+c2014的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案